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Abstract: This research explores how to determine when mathematical problems are 

solved by retrieval versus computation strategies. Past research has indicated that verbal 

reports, solution latencies, and neural imaging all provide imperfect indicators of this 

distinction. Participants in the current study solved mathematical problems involving two 

distinct problem types, called ‘Pyramid’ and ‘Formula’ problems. Participants were given 

extensive training solving 3 select Pyramid and 3 select Formula problems. Trained 

problems were highly practiced, whereas untrained problems were not. The distinction 

between untrained and trained problems was observed in the data. Untrained problems 

took longer to solve, more often used procedural strategies and showed a greater 

activation in the horizontal intraparietal sulcus (HIPS) when compared to trained 

problems. A classifier fit to the neural distinction between trained-untrained problems 

successfully predicted training within and between the two problem types. We employed 

this classifier to generate a prediction of strategy use. By combining evidence from the 

classifier, problem solving latencies, and retrospective reports, we predicted the strategy 

used to solve each problem in the scanner and gained unexpected insight into the 

distinction between different strategies. 

Keywords: Arithmetic, Problem solving, Strategy assessments, fMRI 
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Main Text: 

1 Introduction 

 The ability to accurately identify the strategy a student uses to solve a math 

problem can help the teacher provide guidance and feedback; however, any number of 

different strategies could possibly be used to solve a single arithmetic problem. While 

some strategies can be identified by outward behaviors, such as finger counting, other 

strategies are more difficult to distinguish. Various methods of strategy detection vary in 

trade offs between reliability, reactivity, and ease of use. The current study investigates 

three different indicators of strategy use: verbal reports, response latency, and fMRI 

evidence. We will describe a method for combining these three indicators that has 

applicability beyond study of math cognition.  

One basic division between types of strategies lies in the distinction between 

procedural and retrieval. Procedural strategies use mathematical computations, whereas, 

retrieval strategies involve the recall of facts from long-term memory. Procedural 

strategies are variants of calculations, such as, counting or transforming an unknown 

problem into known sub-problems (25+9= 20+5+9). Retrieval strategies, on the other 

hand, allow a person to arrive at solutions more quickly and accurately than when 

utilizing procedural strategies (LeFevre, J.-A., Sadesky, G. S., & Bisanz, J., 1996b; 

Siegler & Shrager, 1984). While complex procedural methods might include some 

retrieval within the mix of strategies used for problem solving, in this paper, we use 

retrieval to refer to those strategies in which answers are arrived at directly from memory. 

Previous developmental studies documented that as children gain experience solving 

problems they progress from the more mentally arduous procedural strategies to efficient 
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retrieval (Geary, D. C., Brown, S. C., & Samaranayake, V. A. 1991; Imbo & 

Vandierendonck, 2007). Despite this evidence of progression towards retrieval, both 

children and adults do not consistently use just one strategy, but instead, a mix of 

strategies when solving problems (Campbell & Xue, 2001; Hecht, 2006; LeFevre et al., 

1996b; Siegler, 1988). This means that even after training a participant to use a specific 

strategy, exclusive use of that strategy cannot be reliably assumed.  

 We will consider three measures of strategy use: participant report, problem 

solving latency, and brain response. Verbal strategy assessments are based on self-reports 

and are collected during (concurrent) or after (retrospective) the participants complete 

the task being studied. Within the problem solving process, the different methods of 

verbal strategy assessment vary in their reliability (the accuracy of the assessment) and 

their reactivity (the impact of the assessment on the participant’s behavior during the 

experimental task). A second method for determining strategy use comes from the 

relation between strategy use and problem solving latency (LeFevre et al., 1996a; Siegler 

& Shrager, 1984). While retrieval tends to be faster than computation, often the latency 

distributions overlap making latency an imperfect indicator of strategy use. Finally, brain 

imaging studies show distinctions between retrieval and procedural strategies in areas 

such as the horizontal intraparietal sultucs (HIPS) and the angular gyrus (Delazer et al., 

2003; Grabner et al. 2009). While a few fMRI studies have used verbal strategy 

assessments to label in-scanner trials, we are aware of no studies that have used fMRI 

findings to predict strategy use, leaving the accuracy of such a method untested (Cho, 

Ryali, Geary, & Menon, 2011; Grabner et al. 2011). The three measures discussed here 
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provide information regarding the retrieval-procedural distinction; however, each method 

is an imperfect measure for assessing what participants are actually doing. 

 

1.1 Validity of Strategy Assessment 

When studying the use of math strategies, researchers have often relied on self-

reports from the participants. Depending on the study constraints and the questions of 

interest, procedures for collecting strategy assessments vary widely. Several studies 

(Geary & Brown, 1991; LeFevre et al, 1996b) have assessed strategy by asking the 

participants to describe their methods for solving math problems immediately after 

reporting the solutions (concurrent assessments). Other concurrent assessments provide 

predetermined sets of strategies from which the participants must choose the method 

most similar to the one used (Campbell & Timm, 2000; Imbo & Vandierendonck, 2008; 

LeFevre et al, 1996a). An alternative to concurrent strategy assessments collects 

retrospective strategy assessments (RSAs) after the set of problems have been solved. 

RSAs have been used in fMRI studies where participants solved problems during the 

scanning session and then reported strategy use outside the scanner (Cho et al., 2011; 

Grabner et al., 2009). Although retrospective reports are generally considered less 

accurate than concurrent reports (Russo, Johnson, & Stephens, 1989), concurrent strategy 

reports during a functional magnetic resonance imaging (fMRI) task are less feasible due 

to the risk of head movements and the fluctuations in the blood-oxygen-level-dependent 

(BOLD) signal caused by breathing changes associated with speaking (Birn, Smith, 

Jones, & Bandettini, 2008).  
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A debate exists as to the best methodology for accurately and unobtrusively 

eliciting reports of strategy use. Verbal self-reports have been challenged for causing 

reactivity in participant reports and for not being veridical assessments of actual mental 

processes (Kirk & Ashcraft, 2001; Russo et al., 1989). In a study of simple arithmetic, 

Kirk and Ashcraft (2001) found that participants reported an increase in the use of the 

experimenter’s suggested strategy. While differences in latency confirmed the validity of 

the reports, the reactivity of the assessment on participant behavior meant the findings did 

not reflect natural strategy use. In addition, while RSAs do not influence strategy 

selection during the solving process, they present difficulties with respect to reliability. In 

particular, it is unclear how accurately and consistently participants remember what 

strategies are employed. This problem is aggravated by strategy variability. For instance, 

Siegler and Shrager (1984) found that over time children not only switched between 

strategies, but also, one third of the children in the experiment applied a different strategy 

to the same problem. This makes it unreliable to generalize strategy use information 

collected at the end of the task for items solved during a task.  

While recognizing these issues, verbal strategy assessments remain an accepted 

standard and studies indicate behavioral and neuroimaging measures tend to agree 

(Grabner & De Smeldt, 2011; Imbo & Vandierendonck, 2008; Siegler & Shrager, 1984). 

Items reported as having been ‘retrieved’ displayed faster reaction times and fewer 

mistakes than those reported as solved via procedural strategies (LeFevre et al., 1996a; 

Siegler & Shrager, 1984). Additionally, the strong problem size effect of procedural 

strategies is significantly lessened when only retrieval strategies are reported as used 

(LeFevre et al., 1996a). Neuroimaging studies have explored the neural signatures of the 
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different strategies participants report using. An event related potential (ERP) study 

found no evidence of the problem size effect in the ERPs for math problems participants 

reported as retrieval. Items reported as calculated, on the other hand, showed a problem 

size effect in the recorded ERPs (Núñez-Peña, Cortiñas, & Escera, 2006). Another more 

recent neuroimaging study by Grabner and De Smeldt (2011) specifically designed to test 

the validity of strategy assessment combined both electroencephalography (EEG) 

methodology and concurrent strategy assessment data. This study used event-related 

synchronization and desyncronization ERS/ERD to record frequency bands commonly 

associated with retrieval and procedural processes. The results indicated a significant 

relationship between the strategies reported and the frequency bands of the corresponding 

problems.  

 

1.2 Arithmetic training effects and the brain 

Several fMRI studies of strategy use have used math-training paradigms to 

influence the strategies participants chose to use (Delazer et al., 2005; Ischebeck, 

Zamarian, Egger, Schocke, & Delazer, 2007). As mathematical problems are practiced, 

there tends to be a strategy switch from procedural to retrieval (Imbo & Vandierendonck, 

2008; Logan & Klapp, 1991). The Distribution of Associations (DOA) model (Siegler & 

Shrager, 1984) explains how practice solving arithmetic problems results in an increased 

association between problem and solution and a decrease in confusion between similar 

math facts. Procedural strategies are often used when the solution to a problem cannot be 

quickly or confidently remembered, whereas, direct retrieval occurs when there is a 

strong association between the problem and solution. The DOA model has been 
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supported by findings from several experiments, as well as observed in various 

participant populations (Campbell & Timm, 2000; Geary & Brown, 1991; Imbo & 

Vandierendonck, 2008; Reder, 1988).  

Practice of problem solving generally results in a switch from procedural to 

retrieval strategy use, and is associated with changes in activation in different areas of the 

brain. Imaging studies investigating the effects of training (practice) on solving math 

problems have reported clear distinctions in neural activity between trained and untrained 

problems. Several math training studies (Delazer et al., 2003; Delazer et al., 2005; 

Grabner et al., 2009; Ishebeck et al., 2006) report that untrained, in contrast to trained 

problems, activates the frontal-parietal network. The parietal region commonly observed 

in arithmetic studies, the horizontal intraparietal sulcus (HIPS) is generally associated 

with calculation processes, magnitude comparison and counting (Dehaene, Piazza, Pinel, 

& Cohen Kadosh, 2003; Cohen Kadosh, Lammertyn, & Izard, 2008). The frontal regions 

observed in arithmetic studies include the lateral inferior prefrontal cortex, which is 

generally associated with more complex computations that require a degree of planning 

and working memory (Anderson, Betts, Ferris, & Fincham, 2011). The comparison 

between retrieval and calculation shows that the practiced problems involved less activity 

in these regions and more activity in the angular gyrus (Delazer et al, 2003). 

 

1.3 Brain imaging to detect specific cognitive processes 

While there have been studies which used brain imaging to investigate the 

reliability of verbal strategy reports (e.g., Grabner et al., 2009; Grabner et al., 2011), 

these studies have not taken advantage of the power of multi-voxel pattern analysis 
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(MVPA). There have been applications of MVPA, however, that predict other kinds of 

distinct cognitive processes (Damarla & Just, 2012; Pereira, Mitchell, & Botvinick, 2009; 

Shinkareva et al., 2008). In practice, a classifier is first trained on a distinction of interest 

using a sample of fMRI data. It is then tested on a separate data set to see how well it can 

detect the same distinction. How well the classifier distinguishes items reflects both the 

uniqueness of the two elements within a set being compared and the similarity between 

the sets of data used for training and testing. Most of the research on classification of 

brain activity requires a definition of “ground truth”. Simply put, the experimenter knows 

what the participant is doing. It is natural to use verbal reports to assess the ground truth 

for the classification of fMRI data, but, as we have noted, there are questions concerning 

the validity of these reports. Even if there is a solid ground truth, these classification 

methods are imperfect and do not always correctly classify events. As with the previously 

discussed methods of evidence, classification also offers an imperfect measure of strategy 

use.  

 
1.4 Current Study 

 We used a 2x2 within-subject factorial design where we manipulated training 

(trained instances vs. untrained, novel instances) and problem type (two distinct problems 

each requiring different computational procedures to solve). We used both training and 

problem type as means of manipulating the strategies that participants used during the 

scan task. We contrasted trained and untrained items to examine the effect of training on 

latency, brain activation, and RSA. In line with previous studies, we expected untrained 

items to take significantly longer for participants to solve than trained items (Delazer et 

al., 2003; Imbo & Vandierendonck, 2008). Furthermore, we expected reduction in 
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activation of the HIPS region for trained problems in comparison to untrained problems 

(Delazer et al., 2003; Delazer et al., 2005; Ishebeck et al, 2006). Numerous findings about 

the effect of training on strategy use lead us to expect RSAs to predominantly indicate the 

use of retrieval strategies when solving trained problems and procedural strategies when 

solving untrained problems (Imbo & Vandierendonck, 2008; Logan & Klapp, 1991). 

Thus, in our latency, fMRI, and RSA measures we expected the contrast between trained 

and untrained problems mirror the contrast between retrieval or computation strategies. 

The current study used two distinct problem types; one (referred to as ‘Pyramid 

problems’) involved adding several numbers together and the other type (referred to as 

‘Formula problems’) involved the use of division, subtraction and addition. We chose to 

use two problem types in our study to test if our method of classifying problem solving 

strategy is problem specific or can generalize. Previous studies have found that neural 

distinctions between different problem types decrease when problems are solved by 

retrieval (Delazer et al., 2009; Ishebeck et al, 2006), suggesting that neural patterns 

converge in problem retrieval. We hypothesize that the shift from procedural to retrieval 

strategies will be generalizable across problem types.  

The principal interest of this study was to form a prediction of strategy use for 

each item solved in the scanner. We trained a classifier to distinguish between trained and 

untrained problems. We expected the classifier to use neural evidence of retrieval in 

making this classification. For any given trial, the classifier computes the evidence that 

the trial belongs to the ‘trained’ category. This evidence can be used as an indicator of 

whether the trial involved retrieval. We also collected RSAs where participants tell us 

after the fMRI session whether a retrieval strategy was employed for particular problems. 
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Just as the classifier is an imperfect reflection of retrieval, such a report is also imperfect. 

This is particularly apparent given the research that indicates participants switch between 

computation and retrieval for the same problems on a trial-by-trial basis (Russo et al., 

1989; Siegler and Shrager, 1984). Finally, we used the latency on a particular trial as 

another imperfect indicator of strategy use. We compared the classifier, problem solving 

latencies and retrospective reports and investigated how to best combine all three 

measures to improve our ability to assess strategy usage. 

 

2 Material and Methods 

 The current study spanned two consecutive days. On the first day, the participant 

completed a behavioral training session. The second day, the participant returned for an 

fMRI scan.  

 
2.1 Participants 

 Twenty university students (10 females; mean age 21.8/ SD 2.2) participated in 

the study. Participants were recruited by posting flyers on university online message 

boards. Participants gave informed written consent and received monetary compensation 

for their participation. All participants were right handed and had normal or corrected-to-

normal vision. The university ethics board approved the study. 

 

2.2 Materials 

 Each participant was trained on two novel operations associated with distinct 

procedural algorithms. The first type of problem, called a ‘Pyramid problem’, uses the 

same algorithm as in the experiment by Anderson et al. (2011). Pyramid problems have 
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‘$’ as an operator between two values, the base and the height (i.e., B$H, where B is the 

base and H the height). The base is the starting number and the height indicates the total 

number of terms to add together where each item is one less than the previous. For 

example, 11$4 would be expanded as 11+10+9+8, and thus evaluates to 38. The second 

type of problem, the ‘Formula problem’, uses ‘#’ as an operator and is evaluated 

according to the equation V#H=(V/H)+(H/2)-0.5. This formula was specifically chosen 

because it represents a method of finding the base of a Pyramid problem given the height 

and the value of the Pyramid problem (i.e., 11$4=38 and 38#4=11). Participants were 

unaware of this relationship (as confirmed by strategy assessment after the study). The 

maximum base (B) was 10, and the smallest base for any problem set was height minus 

one. To control for difficulty between the two problem types, only problems with a height 

(H) of 3, 4 and 5 were used.  

 

2.3 Training Procedure 

 During one 35-45 minute session, participants were initially taught how to solve 

both a Pyramid and Formula problem and then given practice on both to help them 

memorize answers for three problems from each problem type. The Pyramid problems 

were taught by explaining the role of the base and height of the problem. Participants 

were told to start with the base and then count down until the number of terms they had 

listed was equal to the height. After that, they were instructed to add these values 

together. To teach Formula Problems, the experimenter showed how the variables in the 

V#H expression mapped onto the equation previously shown, and then gave the 

participants time to study the equation. 



Problem Solving Strategies      13 

 

  The experimenter worked with the participant to solve three sample problems of 

each problem type before beginning the computer-based training. During the computer 

training participants were exposed to 6 distinct problems (3 Pyramid and 3 Formula 

problems). The memorized Pyramid and Formula problems were matched in difficulty, 

featuring base values of 3, 4, 5, and distinct height values. After each problem was 

solved, the participant received correctness feedback and instruction on how to solve the 

problem. This feedback featured the problem shown and the mathematical productions 

required to calculate the answer (either the iterative addition or the formula filled in with 

the appropriate terms). Training was divided into 6 blocks; for each block, the participant 

was drilled on each problem 6 times. Over the course of training, the participant solved 

each problem 36 times. In between blocks, the participant practiced using a numeric 

keypad with a similar layout as the one used during the fMRI scan. Since the participant 

cannot see the keypad during the fMRI scan, a cover was placed over the keypad halfway 

through training in order for the participant to practice using the keypad by touch only.  

 

2.4 Scanning Procedure 

 On the day following the training session, each participant completed 6 fMRI 

imaging blocks. Each block contained 3 randomly ordered sets of 7 Pyramid problems (3 

trained and 4 untrained), 7 Formula problems (3 trained and 4 untrained) and 7 Addition 

and Division problems. Untrained problems matched the trained problems in difficulty. 

The first problem of each set was omitted from statistical analysis to avoid warm-up 

effects and effects of switching operations. Untrained problems were repeated twice 

(once per 3 imaging blocks) and trained problems were repeated six times (once per 
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imaging block). Problems were presented in a slow event-related design. During the 

solving stage of the trial, the participant had a maximum of 30 seconds to indicate 

knowledge of a solution by pressing the return key on the numeric keypad. After pressing 

‘return’, participants then had 5 seconds to input a solution and press the return key. 

Because there is no backspace key on the keyboard, participants were unable to correct 

any typos made when entering answers. After answering the problem, the participant was 

given correctness feedback and information about how the problem should have been 

solved. This feedback was the same as that which was received during the previous day’s 

training. In between problems, a 12 second repetition detection task was presented 

onscreen to prevent metacognitive reflection on the previous problem and allow the 

hemodynamic response to return to baseline. In the repetition detection task, participants 

were asked to judge if the letter in the center of the screen was the same as the previous 

letter seen. Because the participant determined solving and input time, the length of the 

scan task was variable across participants and trials. 

 

2.5 Strategy Assessment 

 Following the completion of all 6 imaging blocks, participants exited the scanner 

and then solved 16 paper-based problems which included all the trained and some of the 

untrained problems that they had solved in the scanner. Problems were presented on 

paper, and included 8 Formula problems (3 trained, 5 untrained) followed by 8 Pyramid 

problems (3 trained, 5 untrained). Participants were asked to report the solution to the 

problem and then explain how it was solved. The researcher recorded the participant’s 

verbal report. The participants’ strategy self-reports were coded based on five categories: 
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retrieval, calculated using method taught, guessed, calculated using an alternative method 

and started to solve for the answer but retrieved the solution half way through calculation 

[from here on referred to as the “partial” strategy]. We used these codes as an indicator of 

how these problems had been solved in the scanner.  

 

2.6 fMRI Data Acquisition  

Images were acquired using gradient echo-echo planar image (EPI) acquisition on a 

Siemens 3T Verio Scanner using a 32 channel RF head coil, with 2 s. repetition time 

(TR), 30 ms. echo time (TE), 79° flip angle, and 20 cm. field of view (FOV). The 

experiment acquired 34 axial slices on each TR using a 3.2 mm thick, 64×64 matrix. This 

produces voxels that are 3.2 mm high and 3.125 x 3.125 mm2. The anterior commissure-

posterior commissure (AC-PC) line was on the 11th slice from the bottom scan slice. 

Acquired images were pre-processed and analyzed using AFNI (Cox, 1996; Cox & Hyde, 

1997). Functional images were motion-corrected using 6-parameter 3D registration. All 

images were then slice-time centered at 1 sec and co-registered to a common reference 

structural MRI by means of a 12-parameter 3D registration and smoothed with an 6 mm 

full-width-half-maximum 3D Gaussian filter to accommodate individual differences in 

anatomy. 

 

2.7 fMRI Analysis 

 We processed the fMRI data used for region of interest (ROI) analysis and 

classification analysis in different ways. For the ROI analysis, the two predefined regions 

we focused on were the left and right HIPS from the triple-code theory (Dehaene, 1997) 
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expecting to replicate the finding of less activation for trained problems. To locate these 

regions we used the coordinates from the meta-analysis of Cohen Kadosh, Lammertyn, 

and Izard (2008) (Maxima TC: -31, -50, 45). Imaging data were analyzed using a GLM. 

The design matrix consisted of 9 model regressors and a baseline model of an order-4 

polynomial to account for general signal drift. The 9 model regressors corresponded to 

the following:  the solution periods of correct trained and untrained Pyramid and Formula 

problems (4 regressors) and Addition and Division problems (2 regressors); response 

activity for solution entry (1 regressor across all problem types); the feedback period (1 

regressor) and finally a single regressor for the solution period of incorrect problems. The 

design matrix regressors were constructed by convolving the boxcar functions of these 

variables with a hemodynamic function (assuming the standard SPM hemodynamic 

response – Friston et al., 1998)1. The GLM yielded 9 beta weights per voxel for each 

participant. Our focus was on those representing solution periods for the correct Pyramid 

and Formula problems. Our ROI analysis was done on the averaged beta weights of 

voxels within the HIPs regions. 

 

2.8 fMRI Classification Analysis 

To prepare the fMRI data for a linear discriminate analysis (LDA), we went 

through a number of steps to restrict the set of features used by the classifier to avoid 

over-fitting the data and impacting the reliability of our results (Pereira et al., 2009). For 

the first step we subdivided the brain into 4x4x4 voxel cubes (a voxel is 3.2 x 3.125 x 

3.125mm) over 32 slices of the 64x64 acquisition matrix to create an initial 408 ‘mega-

voxel’ ROIs (Anderson, Betts, Ferris, & Fincham, 2010).  We chose to divide the brain in 
                                                             
1 The difference between two gamma functions used was gamma (6,1) – gamma (16,1) 
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this manner because it maximizes the trade offs between two objectives. First, we did not 

choose larger anatomical ROIs because we want a whole brain perspective that uses 

variation within regions. Second, we did not choose a smaller voxel-level analysis 

because we want to find patterns that exist across participants and using the 4x4x4 mega-

voxels smooths the brain making it more likely that the mega-voxels overlap between 

participants. 

The second step was to eliminate regions that had highly variable fMRI signals. A 

measure of variability was calculated for each of the 6 imaging blocks by dividing the 

block range by the mean. ROIs containing more than 15 TRs across all participants that 

fluctuated more than 15% during a block were eliminated. The reduced sample 

comprised 266, 4x4x4 voxel regions of raw data. Previous work using the 408 voxels 

found reducing the voxels by half had no effect on classifier accuracy reflecting the 

correlations that exist among voxels (Anderson et al., 2010)2. The majority of the regions 

eliminated from the analysis were the most dorsal and ventral slices or on the edges of the 

other slices. For the 266 regions, we estimated 23 regressors for each subject for each 

block: one input regressor for all the trials, one feedback regressor for all trials, and 21 

solving period regressors, one for each problem. We constructed the design matrix 

regressors by convolving the boxcar functions of each of the regressors with a 

hemodynamic function (see footnote 1).  Each boxcar function’s duration was equal to 

the time the participant spent on the trial (Grinband et al., 2008). A GLM was used to 

estimate the betas for each problem as well as the input and feedback periods of the scan 

block.  Combining our results across blocks we get an estimate of engagement (a beta 
                                                             
2 This finding was echoed in the current experiment. Running the classification described 
in section 3.4.1 on all 408 ROIs rather than the 266 regions, we continued to be able to 
distinguish the training distinction (mean d-prime= 1.37, t(19) =8.27, p<.0001). 



Problem Solving Strategies      18 

 

from the GLM) during problem solving for each of the 6 x 21 = 106 trials and these are 

the values that we will use in our classification analyses 

As a third step of dimensional reduction, we used a Principle Components 

Analysis (PCA) to create uncorrelated variables from linear combinations of the ROI 

activity. We chose this method of dimensional reduction for three reasons: the ease with 

which we can map classifier results back to the brain, the reduction in computational cost 

of running the classifier, and because it eliminates redundancies in the data (Ford et al., 

2003; Thomaz et al., 2004). The PCA was performed on the z-scores of the beta values 

for the 266 regions. Using z-scores rather than raw values allowed for comparison across 

subjects. To eliminate fluctuations in the BOLD signal that were physiologically 

implausible, z-scores were Winsorized such that scores greater than 5 or less than -5 were 

changed to 5 or -5 respectively3. The combination of both trimming the regions that 

fluctuated excessively and Winsorizing the data is a commonly accepted technique for 

removing the largest outliers (usually due to signal drop out) while maintaining the “true” 

outliers that deviate less severely (Kettaneh et al., 2005; Marchini & Ripley, 2000). 

 We then preformed an LDA on the first 50 factors extracted from the PCA. Both 

the Kaiser-Guttman rule and an analysis of the scree plot indicate that the first 20 

components capture the most the variance in our data. We chose, however, to use the first 

50 factors because work pairing PCA with LDA suggest it is better to include more 

factors (Yang &Yang, 2002). We used the LDA to identify which of these factors 

contributed to distinguishing the categories. Because we were interested in identifying 
                                                             
3 To assess the effect of Winzoring on our classification analysis we ran the classification 
described in section 3.4.1 un-Winzorized data. We continued to be able to distinguish the 
training distinction (mean d-prime= 1.42, t(19) =9.66, p<.0001), with a hit rate of 63.8% 
and a false alarm rate of 24.7%. Eliminating Winzoring adds noise, which has negative, 
but not substantial effects on our classifier.  
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similar features that exist across participants, we used a leave-one-out cross-validation 

method. We trained on all but one participant and then tested on the remaining 

participant. Besides returning a predicted category for each item, an LDA generates a 

continuously varying evidence measure for category membership and a posterior 

probability that an item is from a category. Both of these measures were used in 

subsequent analyses. 

Figure 1. Average problem solving latency and average accuracy scores of each block in 
the training task with error bars representing standard error.  

 

3 Results 

3.1 Behavioral Results 

 Our measure of latency was calculated as the time between the appearance of the 

problem on the screen and the point at which the participant pressed the return key to 

indicate readiness to input the solution. We only considered correct trials in our analysis 

of latency and the fMRI data. Figure 1 shows average performance during training. A 

repeated measures ANOVA on solution times of correctly solved problems with training 

block (block 1 through block 6) and operation (Pyramid and Formula) as factors showed 
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a significant effect of training block, F(5,95) = 192.52, p<.0001, and a significant 

interaction between block and problem type, F(5,95)=2.72, p< .05, but no significant 

effect of problem type, F(1,19)=2.49, p=.134. A similar repeated measures ANOVA on 

accuracy found a significant effect of training block, F(5,95)=12.96, p<.001, a marginally 

significant effect of problem type, F(1,19)=4.19, p =.06, and no interaction, 

F(5,95)=1.28, p=.27. Participants reached a high level of performance that we would 

associate with retrieval. 

Table 1 

	
   	
   	
   	
  Mean solution time (total time in parentheses) and accuracy  

scores of the trained and untrained problems of both operation types.  

  Trained   Untrained    
 Latency Accuracy Latency Accuracy 

   
Pyramid 2.59 s 93.10% 5.88 s 71.50%    
  (4.34 s)   (7.84 s)      
Formula 3.35 s 91.10% 5.68 s 82.60%    
  (4.83 s)   (7.33 s)      

 

 Table 1 shows the results from the fMRI session. Participants were slightly less 

accurate and considerably slower for trained problems on the day 2 scan task than they 

were on the last block of the day 1 training. Whereas the training task featured only 6 

problems repeated several times, the scanner task consisted of a mix of both trained and 

untrained problems, making it harder for participants to identify the problems for which 

they had memorized answers. Nevertheless, participants were still considerably more 

accurate and much faster on trained problems than on untrained problems. For correct 

problem solving latencies there is a main effect of training, F (1,19)=44.3, p<.0001, with 

                                                             
4 Subjects averaged 1.32 (SD= .29) seconds to type in their answers after solving each 
problem. A similar analysis of total time (solution plus typing) yields similar statistics: a 
significant effect of training block, F(5,95) = 243.5, p<.001 and a significant interaction 
between block and problem type, F(5,95)=2.49, p< 0.04 but no significant effect of 
problem type, F(1,19)=0, p>.99. We focus on solution time. 
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trained problems being solved faster than untrained problems. There was, however, no 

significant main effect of problem type, F (1,19)=2.17, p=.17, or interaction, F 

(1,19)=3.155, p = .92. Accuracy scores showed a significant main effect of training, F 

(1,19)=35.9, p≤.001 and problem type, F (1,19)=6.47, p<.05. There was a cross-over 

interaction of problem type by training, F (1,19)=11.2, p<.005:  for untrained problems, 

accuracy was 9% better on Formula problems, but for trained problems accuracy was 2% 

worse for Formula problems. 

 

3.2 Strategy Assessment 

 We coded the strategy assessments for 5 strategy types: direct retrieval of the 

solution, calculation according to the taught strategy, a mix of retrieval and calculation 

(“partial), guessing, and calculating the problem using an untaught method. Of the 

untrained problems, 90.8% (Pyramid: 90%, Formula: 92%) were reported as solved by 

the taught method, 3% were reported as solved using a partial strategy, 2.5% were 

reported as retrieval and less than 3.5% fell into the other categories. Of the trained 

problems, 60.5% (Pyramid: 64%, Formula: 57%)were reported as retrieved, 25.2% as 

calculated according to the taught strategy, 10.9% as partial and 3.4% in the remaining 

categories.  

 

3.3 Imaging Data – The Effects of Training  

 We used the Cohen Kadosh et al. (2008) ROI for the HIPS to investigate the 

effect of training on two different problem types5. We ran a hemisphere (left, right) X 

                                                             
5 An exploratory analysis of the effects of training across problem types is reported in the 
Appendix A. 
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problem type (Pyramid, Formula) X training (trained, untrained) repeated measures 

ANOVA on the HIPS. There were significant main effects of hemisphere, F (1,19) = 

36.7, p<.0001, which reflected less activation in the right than the left hemisphere, as 

well as a significant training-by-hemisphere interaction, F (1,19)=16.2, p<.001, which 

reflected a greater decrease in the left hemisphere activation. There was a significant 

effect of training, F (1,19)=9.2, p<.01, but not problem type, F (1,19)=1.4, p=.25, and a 

marginally significant operation-by-training interaction, F (1, 19)=3.9, p=.06. Figure 2 

displays a decrease in activation for trained problems in the left HIPS. 6 

 

Figure 2. Mean percent change in activation from baseline in the left HIPS for trained 
and untrained pyramid and formula problems with error bars representing standard error.  
 

3.4.1 Classification of Training  

An LDA was conducted using the first 50 factors from the PCA to predict 

whether or not a problem was trained or untrained. The classifier was trained on all but 

one participant and then tested on that one participant who had been left out of the 

training set. We calculated for each participant the proportion of hits (the percentage of 

                                                             
6 Appendix B reports the results for the angular gyrus. 
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problems correctly classified) and the proportion of false alarms (the percentage of 

problems incorrectly classified). From these two numbers we calculated a d-prime 

measure of discriminability (Wickens, 2001). We calculated the mean d-prime over all 

participants and performed a t-test of whether or not the d-primes were significantly 

greater than zero. 

We first ran an LDA combining data from both problem types. This classifier was 

successful in distinguishing the trained and untrained problems, mean d-prime= 1.58, 

t(19) =10.2, p<.00017, with average hit rates of 63.86% and false alarm rates of 20.1%. 

The classifier produced positive d-prime in its predictions for each of the 20 participants. 

We examined the classifier to find out how it was making its discrimination. 

Classification of the trained and untrained categories is done on the basis of a weighted 

sum of the 50 factors, which can be viewed as the brain evidence for the problem being 

untrained. We took the coefficients associated with the factors and calculated weights for 

each of the 266 brain regions. Figure 3 shows the positive values of these weights for the 

slice of the brain that contains the HIPS. The most positive regions overlap the HIPS, 

which our ROI analysis showed as having the greater activation during untrained 

problems.  

                                                             
7 Throughout, significance levels are calculated for 2-tailed t-tests. 
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Figure 3. Distinguishing regions used in the untrained vs. trained classification (pyramid 
and formula together). These are the voxels that are more active for untrained than for 
trained problems. Locus of the HIPS is marked by the dark squares. The z value is for 
x=y=0 in Talairach coordinates. 
 

Given that there was a significant effect of training on the HIPS ROI, one might 

wonder how well an LDA would do using only that region. The classifier was not very 

successful in distinguishing the trained and untrained problems, mean d-prime= .021, 

t(19) =2.09, p=.10, yielding a hit rate of 82.31% but with a false alarm rate of 80.27%. 

This poor performance is most likely due to considerable trial-to-trial variability in 

activation. A classifier based on whole brain activation can calibrate activation in any one 

region relative to activation elsewhere and is thus more robust to variability between 

trials. 

 

3.4.2 Classification of Training – Similarity Between Problem Types 

We were interested in whether or not the same features distinguished trained from 

untrained problems for the two problem types. To test this we crossed training on 
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Pyramid and Formula problems with testing on Pyramid versus Formula problems. In all 

cases, we trained on 19 participants and tested on the 20th. The results were: 

Train on Pyramid, Test on Pyramid: d-prime = 1.60, t(19) =10.87, p<0.001 

Train on Pyramid, Test on Formula: d-prime = 1.47, t(19) =9.02, p<0.001 

Train on Formula, Test on Pyramid: d-prime = 1.27, t(19) =7.63, p<0.001 

Train on Formula, Test on Formula: d-prime = 1.28, t(19) =8.46, p<0.001 

In all cases, the effects were highly significant with 19 or 20 out of 20 participants 

showing positive d-primes. To test if there were significant differences in prediction 

success, we took the 20 d-primes for each case and subjected them to a 2x2 within-

participant ANOVA. The effect of training source approached significance, F(1,19) = 

3.72, p < .10, but there was no effect of test source, F(1,19)=0.57, nor a significant 

interaction between the factors, F(1,19) = 1.40; p > .25. Thus, while Pyramid data may 

have provided a more reliable case for training, it seems that the same information is 

being used to discriminate between trained and untrained problems for both Pyramid and 

Formula problems. 

 

3.5 Validating the Retrospective Strategy Report and use of Classification to detect 

Strategy Use 

Among correctly solved problems, all three measures (reports, latencies, and 

classifier evidence) show clear differences between trained and untrained problems: 

1. Solution time. Across both problem types participants average 2.96 seconds to 

solve trained problems and 5.81 seconds to solve untrained problems. 
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2. Retrospective reports. Participants report retrieving solutions for 60% of the 

trained problems and for 2% of the untrained problems. 

3. Classification of imaging data. The classifier provides a measure of evidence 

that each trial belongs to the trained or untrained category. Figure 4 shows 

distribution for the trained and untrained problems, with negative values 

indicating evidence for untrained and positive values indicating evidence for 

trained. One can take a positive value on this dimension as also evidence for 

retrieval. 

 
Figure 4. Classifier generated distributions of evidence for training on the trained and 
untrained data set.	
  
 

Additionally, we investigated the convergence of latency, RSA, and the 

classification scores analysis for both trained and untrained problems. The RSAs were 

collected on all of the trained problems, but only a subset of the untrained problems was 

assessed. We eliminated trials in the scanner that did not appear in the RSA. We 

examined the relationship between these reports and the time it took participants to 

answer the problems during the scanning session. For all the correct problems, Table 2 
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reports the average times for problems reported as retrieved versus those problems 

reported as calculated. Participants were 2.53 seconds faster for Pyramid problems 

reported as retrieved and 1.62 seconds faster for Formula problems reported as retrieved. 

We built a multilevel model to test this relationship while taking into account the effect 

of individual differences and training.  Furthermore the multilevel model allowed us to 

deal with the problem that different participants reported different numbers of problems 

retrieved.  This model examined how retrospective reports and training affected latency 

taking into account the effects of individual differences.  To specifically test the 

significance of the relationship between latency and retrospective reports we used the 

Markov Chain Monte Carlo method.  This is a recommended method to arrive at 

confidence intervals of models that include random effects (Baayen, Davidson, and 

Bates, 2008; Goldstein and Browne, 2002). Retrospective reports of retrieval were 

associated with decreased latency for both Pyramid and Formula problems. Pyramid 

problems showed an estimated coefficient of -.56, T2 (19)= -3.1, p<0.005, and Formula 

problems showed an estimated coefficient of -.63, T2 (19)= -4.3, p<0.005. 

Table 2 

	
   	
   	
   	
  The average in-scanner latencies and evidence scores of trained  
and untrained problems divided based on retrospective strategy reports 

  Reported Retrieval   Reported Procedural    
 Latency Evidence Latency Evidence    
Pyramid 2.19 s 1.82 4.72 s -0.07 

   
        
Formula 3.03 s 1.21 4.64 s -0.21    

 

We similarly investigated the relationship between problem solving latency and 

the classifier’s evidence of training. We trained the classifier on the distinction between 

trained and untrained problems using the leave-one-out LDA mentioned previously. We 

used the classifier to calculate for each item the evidence that it belongs to the trained 
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category subtracted from the evidence that it belongs to the untrained set. We built a 

multilevel model examining how evidence scores and training affected latency taking 

into account the effects of individual differences. For both Pyramid and Formula 

problems, problems classified as trained were faster  (Pyramid coefficient of -.28, T2 

(19)= -9, p<0.005, Formula coefficient of-.36, T2 (19)= -9.9, p<0.005) . 

Finally, we investigated whether there was an association between the classifier 

evidence and participant reports (Table 2). Both Pyramid and Formula problems were 

reported as retrieved averaged higher evidence scores than those reported as not 

retrieved.  We ran two multilevel models exploring how retrospective reports and 

problem type affected evidence, taking into account individual participants. Both problem 

types showed a significant positive relationship between report of retrieval and evidence 

scores (Pyramid coefficient of 1.15, T2 (19)= 4.4, p<0.005, Formula coefficient of .76, T2 

(19)= 3.9, p<0.005) 

 

Table 3 
The distribution of the trained problems according to the retrospective reports (RSA), 
 whether the classifier had positive evidence that the item was trained,  
and whether the problem solving latency was shorter than the mean solution time (3s). 

 Solution Time 

RSA Classifier Short Long 
 

Calculate 
Untrained 13 70 

Trained 81 31 
 

Retrieve  
Untrained 38 48 

Trained 223 55 
 
 

3.6 Retrieval Identification for the Trained Problems 

Within the trained problems category, each of the three data sources provides 

evidence of a participant’s strategy on every scanner trial. For all the correct problems, 

Table 3 shows the following distribution of the trained problems: 1) according to 
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retrospective self-report, 2) whether the classifier had positive evidence that the item 

belonged to the trained set, and 3) whether the problem solving latency was greater than 

the overall mean, which was 3 seconds. There are some consistencies among these 

dimensions; however, there are quite a few cases where the sources seem to conflict as to 

predicting if a problem was retrieved. For instance, on 48 trials (8.6% of trained 

problems) participants reported retrieval strategies; yet, these problems feature long 

latencies (M = 5.54 s, SD = 1.88) and the classifier predicted that the problems were 

calculated (mean -.72, Figure 4). Similarly, on 81 trials (14.5% of trained problems) 

participants reported the use of procedural strategies; yet, these problems feature fast 

latencies (M = 1.98 s, SD = .5) and strong classifier evidence for retrieval (M = 2.08, SD 

= 1.53). More generally, nearly half of the cases (47.6%) involve two of the measures 

voting one way, and the other measure voting in the opposite direction.  

How can one best combine these three sources of information (RSAs, latencies 

and classification evidence scores) to predict how a problem was solved? Essentially, the 

solution process is a hidden state that is associated probabilistically with these three 

observable measures. We used expectation maximization to fit a mixture model (Aitkin 

& Rubin, 1985; Bailey & Elkna, 1994) to these three measures to identify the hidden 

process states for the trained problems. A mixture model assumes that partially correlated 

measures arise from a mixture of states in which the measures are independent. We 

suspected that there were two such states, retrieval and calculation, and that we were 

observing a mixture in which some trials reflected retrieval and some trials reflected 

calculation; however, not to prejudge the matter we searched for the best number of states 

over the range 1 to 10.  
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Each latent state i is associated with a probability pi of reporting retrieval, a 

distribution Fi of latencies, and a distribution Gi of evidence from the classifier generated 

probabilities. We assumed that the latency distribution Fi will be shaped as a gamma with 

shape vi and scale ai and that the classification evidence distribution was distributed as a 

normal with mean µi and standard deviation σi. Then the probability of a trial j with 

reported strategy rj, latency tj, and evidence ej, is: 

Prob(rj,, tj, ej) = ∑i [si * Pi (rj) * Fi (tj, vi, ai) * Gi (ej, µi, σi) ] 

where si is the probability of being in state i and Pi(rj)  = pi if the RSA rj  is retrieval and 

1- pi  if it is compute. Each state requires estimating 6 parameters – si, pi, vi and ai , µi and 

σi. To assure that expectation maximization did not get stuck on a local maximum, we 

ran 12,000 parameter searches from random starting points for each number of states. 

To our surprise, the best model involved 3 states rather than 2. For comparison, 

Table 4 reports the parameters estimated and the measures of goodness of fit for models 

with states varying from 1 to 4. More states mean more parameters, resulting in better 

fitting models and higher log likelihoods. To correct for this we calculated the Bayesian 

information criterion (BIC) that penalizes the fits for number of parameters 

(Lewandowsky & Farrell, 2011): 

,        

where L is the likelihood value from maximum likelihood estimation, k is the number of 

free parameters, and n is the total number of observations contributing to the data. The 3-

state model results in the lowest (best) BIC value.   
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Table 4 
Parameter estimates, measures of goodness of fit and Bayesian information criterion (BIC) reports for three models.  
 

 Proportion  Report  Latency 
(Gamma)  

Evidence 
(Normal) Log Number of BIC 

 of Trials Probability Mean SD Mean SD Likelihood Parameters Measure 

1-State 1.000 65.1% 3.00 1.75 1.16 1.87 -2541 5 5118 

2-State 
0.533 78.7% 1.76 0.60 2.27 1.78 

-2334 11 4749 
0.467 49.7% 4.41 1.90 -0.11 0.90 

3-State 

0.217 88.2% 1.29 0.25 3.03 2.06 

-2298 17 4722 0.325 67.4% 2.16 0.53 1.81 1.17 

0.457 52.5% 4.41 2.07 -0.20 0.91 

4-State 

0.320 86.7% 1.47 0.55 2.57 2.13 

-2284 23 4738 0.216 63.3% 2.18 0.45 1.86 0.92 

0.340 54.3% 3.66 1.25 0.16 0.70 
0.124 42.3% 6.54 2.00 -0.94 0.67 

 
Figure 5a shows the inferred latency distributions for the 3-state model in Table 4, 

and Figure 5b shows the inferred evidence distributions for the three states. The figures 

also illustrate how the inferred distributions combine to match the observed distributions. 

Just as the self- reports are only partially diagnostic, the 3-state model implies both 

classifier evidence and latency are also only partially diagnostic. This can be seen in the 

overlap of the inferred distributions where some retrieved items have longer times than 

some compute items, and some retrieved items have less evidence than some compute 

items. 

 

Figure 5. Figure 5a (Left) shows inferred latency distributions for the 3-state model in Table 4 and Figure 
5b  (Right) shows the inferred evidence distributions.  
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3.7 Investigating the effect of including untrained data in the model 

 We next included the untrained data into our data set to check the validity of our 

3- state predictions. While trained data contains a range in strategy use, we know that 

untrained problems are unfamiliar to the participants and are solved using procedural 

strategies. Since we only collected reports on 6 untrained problems per participant, we 

eliminated two-thirds of our untrained problem set from the data used by our mixture 

model.  The mixture model discussed in section 3.6, when run on a combination of 

trained and untrained data best fit four states. Table 5a shows the average value of the 

evidence scores, latency, and retrospective reports given for each of the four states. For 

every problem, the model outputs the probability of belonging to each of the states. To 

achieve a single state assignment for every problem, we assigned each problem to the 

state category that the model indicated had highest probability of representing that 

problem. Table 5b compares how the trained and untrained problems assigned to the four 

states, best fit by the second model, relate to the trained problems assigned to the three 

states, best fit by the first model (Table 4). It is apparent that the model of all the data has 

recovered the original three states of the trained data model and then added a fourth state 

mostly occupied by untrained problems. Comparing the parameters for the two models 

also indicates that the first three states of the model of all the data (Table 5) are found in 

the three states of the trained data model (Table 4). The largest deviation from perfect 

correspondence between the models is the 60 trained problems assigned to states 3 by the 

trained data model that are now classified in State four. The fourth state emerges with 
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descriptors for the most extreme cases of calculation, those with the longest latency, 

lowest reports of retrieval and highest evidence of calculation.  

Table 5 
 
(a) Parameter estimates for the four state model fit on trained and untrained data. 

 
Proportion 
of Trials 

Report 
Probability 

Latency 
(Gamma) 

Evidence 
(Normal) 

 4 States Mean SD Mean SD 

1 0.25 86.6% 1.4 0.3 2.6 2.11 

2 0.23 65.4% 2.4 0.52 1.6 0.95 

3 0.29 37.7% 4.08 1.4 -0.01 0.6 

4 0.23 13.0% 6.76 3.14 -1.28 0.74 
 
(b) Number of problems in each of the combination of 3 states (Table 4)  
and each of the 4 states (Table 5a). 

  4 States All Problems 

  1 2 3 4 
3 States 

of 
Trained 

Problems 

1 173 5 0 0 

2 2 144 24 0 

3 1 0 157 60 

Untrained 2 3 37 95 

 Table 5b examines the distribution of the different states among the trained and 

untrained problems. As we would expect, untrained problems are for the most part 

predicted to be in either the third or fourth state. Trained problems, on the other hand, 

consist of a mixture of procedural and retrieval strategies. In Table 5a we see that the 

dominant feature in state 1 is rapid response – almost all the items in this category show 

latencies under 2 seconds, matching the speed that participants showed at the end of 

training (Figure 1). At the other extreme, State four is dominated by evidence having 

virtually no case where the evidence indicates retrieval. States two and three, on the other 

hand, represent more ambiguous cases of retrieval and calculation.  

 

3.8 Contribution of the three sources to the mixture model 

 The previous results confirm the model’s ability to distinguish strategic states. To 

assess the contribution of the different measures on the predictions made by the model we 
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investigate how well each measure alone could predict the values generated by the 

mixture model. We used the output of multi-source mixture model run on trained and 

untrained data to assign each trial to one of four states. We ran three multinomial logistic 

regressions; one on each data source separately to explore how well each explained the 

full model’s four state predictions. The BIC scores for the models indicated that latency 

best fit the data (BIC 838.56) followed by the evidence scores (BIC 1,161.1) and lastly by 

retrospective reports (BIC 1,714.4). While no measure alone fit the 4-state model, this 

analysis tells us how well each measure could predict four states.  

 We next looked at the ability of the various combinations of sources to predict the 

state solution we obtained when using all sources. Using the original parameters we 

estimated from all sources we then reran the model with different combinations of 0, 1, 2, 

or 3 sources of information. Assigning each problem to the most likely state we looked at 

the match between the states discovered and the state solution obtained with all four 

sources. Table 6 shows the results. While all sources contribute to the state identification, 

it is clear that the retrospective reports contribute less than either evidence scores or 

latency. 

Table6 
The percentage of the total mixture model accounted for by  
using different combinations of the three measures 

 Evidence Scores Used 

Latency 
Used 

Reports 
Used 

No Yes 

 
No 

No 31.0% 72.7% 

Yes 41.8% 74.8% 
 

Yes  
No 76.1% 92.3% 

Yes 81.4% 100.0% 
  
 
4 Discussion 

The current study investigated the effect of training on problem solving strategy. 

We studied two different problem types, Pyramid and Formula problems, each of which 
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employed unique operations. Participants received training on 3 Pyramid and 3 Formula 

problems prior to the scan. During the scan session, participants solved a mix of trained 

problems and untrained problems that had not been seen before. The effect of training 

suggests that while learning did take place, it was inconsistent among trained problems. 

As a result, we were challenged to explore a method for predicting strategy using 

problem solving latency, retrospective strategy reports and fMRI data.  

 

4.1 Effect of Training 

This study used a training paradigm in order to influence the problem solving 

strategies employed by participants. Consistent with prior research (Delazer et al., 2005; 

Imbo & Vandierendonck, 2008; Ischebeck et al., 2006), trained problems had decreased 

problem solving latency and increased accuracy when compared to untrained problems. 

When trained problems were randomly mixed with untrained problems during the scan 

task, there was an increase in latency and decrease in accuracy; however, trained 

problems continued to be more quickly and accurately solved than untrained problems. 

After the scan task, participants reported using procedural strategies in about 40% of 

trained trials. Previous training studies showed greater reductions in latency and lower 

reports of procedural strategy use than our study (Delazer et al., 2003, Delazer et al., 

2005). We trained participants in a single session, whereas other studies used 5 or more 

sessions to train participants (Delazer et al., 2003, Delazer et al., 2005). We chose not to 

‘over train’ our trained problems in order to create problem sets that varied in familiarity. 

Even after many years of schooling, participants have been found to solve common 

arithmetic problems like 8+6 or 8*6 using mixtures of retrieval and procedural strategies 
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(Campbell and Timm, 2000; Hecht, 2006). Our goal in this study was to build a method 

for assessing strategy in the scanner that was robust enough to study math problem 

solving without requiring that participants be trained to such a degree that their 

distribution of strategies used becomes artificial.  

The distinction between trained and untrained problems was also identified in our 

ROI analysis of the HIPS, a region that contributes to the classifier and is highly 

implicated in arithmetic and counting (Dehaene et al., 2003). In agreement with other 

training studies (Delazer et al., 2003; Ischebeck et al., 2006), HIPS showed a significant 

main effect of training with no difference between the two problem types. While a 

classifier using only the HIPS was not reliable, a classifier using a larger network of 

regions including the HIPS was successful in distinguishing between trained and 

untrained problems. It is worth noting that neither the HIPS nor angular gyrus was 

identified in our exploratory analysis contrasting trained and untrained problems 

(Appendix A). First, these regions, though an important in distinguishing retrieval and 

calculation, are two of many regions that provide information useful in making this 

distinction (Arsalidou and Taylor, 2011; Dehaene et al., 2003; Grabner et al., 2009). 

Second, retrospective reports indicate that the trained problems were solved by a mixture 

of strategies, it is unclear the percentage of retrieval problems that would need to be 

present in this sample in order for us to find robust training effects in the exploratory 

analysis. 

We compared classifiers that were trained and tested on the same operation or 

trained on one operation and tested on the other. There was no significant difference in 

precision suggesting that the effects of training are the same for the two problem types. 
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This finding indicates that the distinction between trained/untrained used by the classifier 

is independent from problem type. 

 
4.2 Convergent validity of strategy assessment 

This study found that the three methods of assessing strategy use (in-scanner 

latency data, strategy assessment reports, and classifier predictions of retrieval) are 

related to one another. The relationship between reports and latency is in agreement with 

other studies (Grabner & DeSmedt, 2011; LeFevre et al, 1996a) that show alignment 

between concurrent strategy assessment and supporting latency data. Also in line with 

previous research, this study finds participants are significantly slower to solve problems 

when using procedural strategies than when using retrieval (Goldman, Mertz, & 

Pellegrino, 1989; Grabner et al. 2011; Imbo & Vandierendonck, 2008). Additionally, 

there was a significant relationship between latency data and the evidence scores 

generated by the classifier. The trained problems showed substantially increased latency 

in the scanner (as compared to the training task) and many had latencies overlapping with 

untrained problems. Similarly, the classifier found overlapping distributions of evidence 

(Figure 4). Finally, we found a relationship between strategy assessment reports and 

classifier generated evidence scores. Previously, both concurrent and RSAs have been 

verified by observing established neural patterns of different strategies that reflect the 

reported use of strategies (Grabner & De Smedt, 2011; Grabner et al. 2009).  

 

4.3 Predicting Strategy Use from three data sources  

 While we found similarities among the three measures, it is clear no single 

method offered a perfect measure for assessing strategy. This raised the question of how 
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these three measures might be combined to create a more accurate predictor of strategy 

use. We combined classifier-generated evidence scores, the verbal reports of 

retrospective strategy use, and the in-scanner latency data to detect strategy use by 

identifying the best mixture model. The BIC values indicated that within the trained 

problem set the 3-state model did the best job fitting the data. To provide a convergent 

test, we ran the mixture model on a combination of untrained and trained problems and 

found the model best fit four states. Three of the four states fit by this model 

corresponded closely to the three states fit by the model of only trained problems. The 

additional fourth state mainly is composed of the untrained problems. The addition of 

untrained data allows the model to separate the calculation state into what appears to be 

fast and slow calculations. The fact that untrained problems are predominately 

represented by these states is evidence for the reliability of the differentiations made by 

the model.  

Examining the distribution of the different latencies, fMRI evidence and 

retrospective reports in the different state categories give some insight into what the 

states represent. The three states of the mixture model run only on the trained data fall 

into two retrieval-like states and one calculation state. Of the two retrieval states, one 

encompasses the more obvious cases of retrial whereas the other contains problems with 

slightly longer latencies, lower evidence scores and fewer reports of retrieval. This 

second retrieval strategy state may reflect problems that involve a strong ‘feeling of 

knowing’ yet require additional work to recall the solution (Reder and Ritter, 1992). The 

Delazer et al. (2003) math training study reported that, despite 5 days of training, some 

participants used partial retrieval strategies as well as full retrieval strategies. While that 



Problem Solving Strategies      39 

 

study was unable to test that hypothesis, it seems possible that our model is disentangling 

the distinction between fully or partially retrieved math facts.  

 

4.4 Contribution of the three data sources in predicting strategy 

 Having identified that the models appear to be detecting separate groups of 

strategies, we can then assess the contribution of the three measures in the model. We 

looked at how well each measure by itself predicts the four states predicted by the 

mixture model of trained and untrained data. A comparison of the BIC scores of the three 

logistic regressions of the measures indicates latency scores best predicted the four states, 

followed by evidence scores and finally retrospective reports. Next, we analyzed the 

ability of different combinations of measures to generate the predictions of the 4-state 

mixture model. The performance of each data source in predicting the output of the full 

mixture model shows that latency is only about 4% more accurate than the imaging 

classifier evidence (see Table 6). When the two measures are combined together there is 

a 16% boost in accuracy, and we account for 92% of the full model’s prediction. 

Retrospective reports contribute very little to the ability to distinguish strategy, thus 

supporting claims that retrospective reports are generally inaccurate (Russo et al., 1989). 

Taken together these tests suggest that latency provides the best source of data when 

distinguishing strategies: however, it is apparent that without the addition of the other 

data sources, the model is restricted in its ability to detect distinctions between strategies.  

 

4.5 Conclusion 
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 In this study we used selective training in order to generate sets of problems likely 

to be solved by either procedural (untrained) or retrieval (trained) strategies. While 

training did influence the speed, accuracy, strategy use, and brain activation patterns, 

participants continued to use procedural strategies to solve some of the trained problems. 

We used the distinction between trained and untrained problem sets to train a classifier. 

When we applied this classifier to the trained problem set, it appeared that the distinction 

identified was that between different problem solving strategies. The classification of 

fMRI data generated evidence scores that were significantly correlated with latency data 

from the scan task and aligned with the retrospective reports. Using the measures of brain 

activity, self-report and behavioral data, we discovered a 3-state model that gives the best 

account of the trained problems and a 4-state model that gives the best account of all 

problems. These states appear to represent distinct problem solving strategies. By 

combining activation data, latency measures, and RSA, a clearer picture of strategy use 

emerges.  
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5.1 Appendix A 
 
Exploratory analysis – The effects of training  

 The results of the whole-brain contrast between trained and untrained problems 

are listed in the below table. This analysis combines problem types, and focuses on the 

general distinction of training. We found significant activation clusters (p<.005), by using 

an extent threshold 20 voxels and running a simulation to find a brainwise alpha .05 

(Cox, 1996).  

 
Significant activation clusters (brainwise p<.05) from the contrast of trained-untrained 
problems across both problem types. 
Brain area X Y Z voxels t-value   
L Cuneus -2 -67 30 719 4.38   
L Middle Occipital G -26 -93 17 328 4.79   
L Precentral G -33 -20 65 299 3.58   
R Middle Occipital G 32 -91 7 164 5.98   
R Fusiform G 32 -60 -9 155 3.81   
L Postcentral G -57 -15 16 82 3.19   
        
Coordinates reported in Talairach coordinate space given by AFNI. Anatomical labels based on 

the the Talairach-Tournoux atlas (Talairach and Tournoux, 1988). The label represents the 

location of peak activation. Significant activation clusters (p<.005, extent threshold 20 voxels, ran 

a simulation to find a brainwise alpha .05) (Cox, 1996)  Abbreviations: L, left hemisphere; R, 

right hemisphere; G, Gyrus.  
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5.2 Appendix B 
 
Imaging Data – The Effects of Training in Angular Gyrus 

We used the Dehaene et al. (2003) specification of the left angular gyrus (AG) as 

located at -41, -66, 36 in Talairach coordinates. We ran a problem type (Pyramid, 

Formula) X training (trained, untrained) repeated measures ANOVA on the left AG. 

There were no significant main effects. There was a moderately significant operation-by-

training interaction, F (1, 19)=5.88, p=0.03, with Pyramid problems showing a slight 

increase in AG activation (.014 to .09%) with training and Formula problems showing a 

very slight decrease in activation (.031 to .026%). As these percentages indicate, the 

absolute level of AG activation was quite low. This interaction may be due to differences 

between these operation types in the strategies used to solve trained and untrained 

problems.  The percentage reports of retrieval for trained Pyramid problems is 7.7% 

higher than those of trained Formula problems.  
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