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Abstract

This fMRI study examines the changes in participants’ information process-

ing as they repeatedly solve the same mathematical problem. We show that

the majority of practice-related speedup is produced by discrete changes in

cognitive processing. Because the points at which these changes take place

vary from problem to problem, and the underlying information processing steps

vary in duration, the existence of such discrete changes can be hard to detect.

Using two converging approaches, we establish the existence of three learning

phases. When solving a problem in one of these learning phases, participants

can go through three cognitive stages: Encoding, Solving, and Responding.Each

cognitive stage is associated with a unique brain signature. Using a bottom-

up approach combining multi-voxel pattern analysis and hidden semi-Markov

modeling, we identify the duration of that stage on any particular trial from par-

ticipants brain activation patterns. For our top-down approach we developed

an ACT-R model of these cognitive stages and simulated how they change over

the course of learning. The Solving stage of the first learning phase is long and

involves a sequence of arithmetic computations. Participants transition to the

second learning phase when they can retrieve the answer, thereby drastically re-

ducing the duration of the Solving stage. With continued practice, participants

then transition to the third learning phase when they recognize the problem as
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a single unit and produce the answer as an automatic response. The duration

of this third learning phase is dominated by the Responding stage.

Keywords: Skill acquisition, Cognitive modeling, ACT-R, fMRI

1. Introduction

Across domains, practice is acknowledged to have transformative effects on

performance. Several models of skill acquisition propose different explanations

for how practice reduces the duration and increases the accuracy of task perfor-

mance. These models differ in whether they attribute speedup either to discrete

changes in the cognitive processes executed to solve a problem or to a greater

efficiency of the same processes. In this paper, we address both explanations

within the context of modeling the speed up in mathematical problem solving.

In particular, we combine cognitive modeling with new methods of analyzing

fMRI data to understand the detailed changes that take place as participants

transition from the first time they solve a novel problem, to the point at which

they automatically recognize a problem’s solution.

1.1. Models of skill acquisition and practice related speedup

As people practice solving a problem, the time it takes to solve that prob-

lem decreases. Previous research has focused on understanding the nature of

this speed up. In their classic paper, Newell and Rosenbloom (1981) observed

that performance tends to speed up as a power function of the amount practice,

highlighting what has been called the ‘Power Law of Practice’. In their paper

describing these effects, performance improvements were explained as chunking

of cognitive processes into fewer processes (Newell & Rosenbloom, 1981). Sub-

sequent research has refined this characterization of practice by investigating

whether the speedup is really best fit as a power function (e.g. Heathcote et al.,

2000), and by examining to what degree the speedup might reflect changes in

the strategies used for solving the problems (e.g. Delaney et al., 1998).

Unlike Newell and Rosenbloom’s work, the Race model, which is part of the

Instance Theory (Logan, 1988; Compton & Logan, 1991; Logan, 2002), described
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the learning mechanism for practice-related speedup as involving a quick shift

from computation to retrieval followed by a power-like speed up in the retrieval.

According to the Race model, each time a problem is practiced it becomes

encoded in memory; then, when a participant sees the problem again, each of

the previously encoded instances independently races to generate the response

and the fastest process ‘wins the race’. As the number of instances in which

a participant retrieves the answer increases, the speed of the winning retrieval

will increase as well. This model not only predicts a power-law speedup with

practice, but also a decrease in the variability in latency with practice.

In contrast to the Race model, a number of studies have suggested the com-

putation process may have its own speedup before the shift to retrieval. Delaney

et al. (1998) argued that both computation and retrieval are strategies that have

their own power-law speedup. Rickard’s Component Power Law (CMPL) model

(Rickard, 1997; Bajic & Rickard, 2009; Bajic et al., 2011) focuses on two sources

of speedup—the discrete switch from computation to retrieval and the speed up

within the computation and retrieval phases. Initially Rickard focused on speed

up in retrieval but he has also suggested that faster associative retrieval may be

responsible for speed up in the computations used to solve a problem.

Fitts and Posner (1967) were the first to propose a three-phase model of

skill acquisition that consists of a cognitive phase, an associative phase, and an

autonomous phase. Anderson (1982, 1987) later related this to an early version

of a cognitive architecture, the ACT theory. He suggested that the transition

from the cognitive to the associative phase reflected a transition from compu-

tation of the answers to declarative retrieval of learned answers, and that the

transition to the autonomous phase was produced when retrieval was replaced

by a production rule that directly produced the response to the stimulus.

The task in this paper is modeled within modern ACT-R theory (Anderson

et al., 2004; Anderson, 2007). ACT-R models specify the full time course of pro-

cessing that occurs while performing a task, from perceptual encoding through

response generation, differentially leveraging specific functional modules over

the course of a task. A significant advantage of modeling at this level of detail

3



is that it allows us to relate a model of skill acquisition to changes in brain

activation by identifying the major cognitive systems used at different stages of

a task. ACT-R models for a number of tasks have addressed the transition from

computation to retrieval and the impact of practice on performance. Ander-

son and Lebiere (1998) described a model of an alpha-arithmetic experiment by

Zbrodoff (1995), which has become a standard in the ACT-R tutorial (Bothell

et al., 2009). The major speedup is produced by a discrete transition from com-

putation to retrieval although there is some further speed up in retrieval of the

answer with practice. That model did not learn production rules for directly

mapping stimuli to responses (and so did not reach the autonomous phase of

skill acquisition); later models, however, added this functionality. Such item-

specific production rules have played a major role in a number of ACT-R models

where specific items have been repeated a large number of times (Taatgen &

Anderson, 2002; Taatgen & Lee, 2003; Anderson et al., 2005), and will do so

here as well.

1.2. Models of practice and the brain

The models of skill acquisition previously discussed emerged from research

in which cognitive processing was inferred from reaction time. A separate, but

related field of research on the impact of practice on brain function has largely

neglected theory concerning how cognitive processing changes with practice.

Many studies on the impact of practice occur over long periods of time, such

as hours or days (e.g. Tang & Posner, 2014; Lee et al., 2012), using contrasts

between trained and untrained tasks to observe gross structural changes (Lövdén

et al., 2013), as well as changes in functional activation (Patel et al., 2013). In a

review of this literature, Kelly and Garavan (2005) acknowledge the importance

of considering the impact of practice on strategic changes in how the task is

performed. Although Kelly and Garavan wrote their review a decade ago, this

sentiment continues to be echoed by others (Tang & Posner, 2014; Reber, 2013).

In this section, we examine two different cognitive models of skill acquisition that

have emerged to explain the impact of practice on neural activation.
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In their ‘Scaffolding framework’, Petersen et al. (1998) study the impact

of practice on task-specific demands. When participants first encounter a novel

task, a set of brain regions categorized as scaffolding regions are used to perform

the task. These regions vary depending on the task demands. With practice, as-

sociations become stored in memory and a different set of storage brain regions

are involved in the task. While this framework shares many similarities with

the Instance theory (Logan, 1988, 2002) and the CMPL (Rickard, 1997, 2004),

the authors point out the difficulty in using neural activations to prove models

such as their own. The scaffolding framework is one of a family of frameworks

researchers have pieced together to interpret changes in neural activation that

occur during skill acquisition (e.g. Kelly & Garavan, 2005; Patel et al., 2013).

While these studies often mention the previously described models of skill acqui-

sition (e.g. Fitts & Posner, 1967; Anderson, 1982; Logan, 1988; Rickard, 1997),

these are most often used to describe practice effects in broad strokes rather

than to test predictions about learning related change. In the current paper,

we propose a method that addresses some of the limitations raised by Petersen

et al. (1998) when using neuroscience to understand skill acquisition.

With the dual processing theory, Schneider and Chein (2003) makes the

distinction between control and automatic processes. Unlike the scaffolding

framework, the dual processing theory can be simulated using the computational

model, CAP2, developed by Schneider and Chein. When first introduced to

a task, the participant performs the task using controlled processes that are

limited to the sequential execution of cognitive processes. This initial process is

modeled with CAP2 , a system that is much like an abbreviated version of ACT-

R. Eventually, with practice, controlled processes switch to automatic processes

that simulate the reflex like automization phase described by Fitts and Posner

(1967). These automatic processes are modeled in the CAP2 system with a

connectionist network and allowed for parallel processing. Unlike the Instance

theory, CMPL, or three-phase model, which each all distinguish computation

from retrieval processes, both processes occur in the control process arm of

CAP2. The distinction between computation and retrieval is not emphasized
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by Schneider and Chein. This theory is used in several studies to interpret

neural changes from pre- to post-training (Chein & Schneider, 2005; Luu et al.,

2007; Albouy et al., 2012). The dual process theory, however, is unsuitable for

addressing the questions surrounding skill acquisition that we address in this

paper as it does not address the cognitive changes that occur prior to the shift

to automization (Chein & Schneider, 2005).

Much of the prior work exploring the impact of practice on neural activation

forgoes an exploration of the continuous changes associated with practice in

favor of pre- and post-training contrasts (for reviews: Patel et al., 2013; Kelly

& Garavan, 2005). While models we discussed here exist to explain the gen-

eral distinction between novel and well-practiced tasks, there is a gap in this

literature in understanding how this shift occurs. Although these changes may

be obscured in traditional analysis (Patel et al., 2013; Kelly & Garavan, 2005;

Poldrack, 2000) there is evidence that, even over the course of an initial pre-

training scan, changes in neural activation attributable to learning the stimuli

can be found (Petersen et al., 1998). Our approach offers an alternative for

both identifying when shifts in cognitive processing occur and also for building

hypotheses concerning the expected impact cognitive changes have on neural

activation.

1.3. Pyramid problems and the use of hidden Markov models

This paper merges two efforts that have used hidden Markov models to un-

derstand problem solving and skill acquisition by parsing sequences of episodes

into distinct states. The two efforts are focused on different time scales. Ander-

son and Fincham (2014,) were concerned with the cognitive stages that occur

within a particular problem-solving trial. Tenison and Anderson (2015) on the

other hand, focused on between-trial changes: the learning phases that occur

over an entire experimental session. The current effort combines these two

approaches, providing a characterization of changes that span three orders of

magnitude, from seconds to an hour.
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Anderson and Fincham (2014,) used multi-voxel pattern analysis (MVPA)

and hidden semi-Markov models (HSMMs) to develop and test ACT-R mod-

els. Using this approach, they parsed fMRI data collected during mathematical

problem-solving episodes into multiple stages defined by distinct brain signa-

tures, and tested model predictions about the length of these stages. They

were, however, only concerned with problem solving on the first encounter with

a problem and not on subsequent repetitions of that problem. Tenison and

Anderson (2015), using a similar experimental task, focused on how problem

solving changed across multiple practice opportunities. Using the latency data,

they found evidence for three phases of learning, which they tentatively associ-

ated with the cognitive, associative, and autonomous phases proposed by Fitts

and Posner (1967). Furthermore, fMRI data collected during this experiment

was qualitatively consistent with this three-phase characterization. Here we

will use the Tenison and Anderson (2015) learning paradigm, but apply the

HSMM-MVPA methods used by Anderson and Fincham (2014,).

In both the experiments of Anderson and Fincham (2014,) and Tenison and

Anderson (2015), participants solve pyramid problems, which are presented with

a dollar symbol as the operator—e.g., 8$3=X. Pyramid problems involve a base

(“8” in this example) that is the first term in an additive sequence and a height

(“3” in this example) that determines the number of terms to add. Each term

in the sequence is one less than the previous—so 8$3 = 8+7+6 = 21. Anderson

and Fincham (2014) compared problems with positive single digits for base

and height (regular problems) to problems that required participants to extend

their knowledge (exception problems). Exception problems contained features

such as problems with negative or variable bases (e.g. -9$4=X, X$4=X). Using

the HSMM-MVPA technique, they identified and modeled 4 cognitive stages

in the solution of exception problems—an Encoding stage, a Planning stage, a

Solving stage, and a Responding stage. When applying this approach to regular

problems, they identified only 3 stages, discovering that regular problems were

solved without a Planning stage.

The current study focuses on regular pyramid problems, and the impact
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Figure 1: A swimlane representation of an ACT-R model whose subgoals correspond to the

bracketed stages. The boxes in a row represent when a module is engaged.

of practice on the cognitive stages participants go through when solving these

problems. Figure 1 shows a swimlane representation of the activity of Anderson

and Fincham (2014)’s ACT-R model for the solution of the regular problem

7$4=X, which took the model 10.91 seconds to solve, close to the participant’s

average time of 11.24 seconds on this problem. The ACT-R cognitive archi-

tecture is organized into modules, each of which processes a different type of

information and has its own buffer to hold information. Figure 1 shows when

the Visual, Imaginal, Retrieval, Manual, and Metacognitive modules are active

in solving the task. Periods when different subgoals were active are labeled

above the swimlane. During the Encoding period the 5 terms in the expression

are separately encoded, requiring heavy engagement of the Visual module and

the Imaginal module to build up a mental representation of the problem. The

Encoding period is terminated when the Metacognitive module selects the strat-

egy for solving the regular problem. The Solving subgoal involves the iterative

addition of 7 + 6 = 13, 13 + 5 = 18, and 18 + 4 = 22. This requires heavy

engagement of the Retrieval module to process relevant facts and the Imaginal

module to update problem representations as the computations are performed.

The Manual module dominates during the Responding subgoal when the digits

in “22” are keyed out followed by an enter key. The Manual module is also

involved during the Solving stage, where it is used in finger counting to keep

track of the number of terms added.
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Figure 2: Illustration of HSMM-MVPA producing a 4-stage solution with 3 conditions. Input

to the HSMM-MVPA are scans organized within trials. Each scan consists of the 20 PCA

scores. Parameters are estimated for each stage: 20 PCA means that define the brain signature

and distribution parameters for each condition-stage combination. Also calculated are the

stage occupancies (probabilities that the participant is in each stage on a particular scan).
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The representation of the problem solving activity in ACT-R acts as a hy-

pothesis that can be tested by exploring each participant’s brain activation while

problem solving. The module activity can be organized into subgoals that re-

flect different stages in solving the problem. For instance, in the model of the

regular problem 7$4=X depicted in Figure 1, there are three stages: Encoding,

Solving, and Responding. Anderson and Fincham developed the HSMM-MVPA

approach illustrated in Figure 2 to find convergence between the predictions of

cognitive models such as Figure 1 and the participant’s neuroimaging data. This

method simultaneously used MVPA to infer the mean brain activation pattern

in a stage and HSMM to infer how a trial was parsed into stages. Each cognitive

stage is associated with an expected whole brain pattern of activation referred

to as that stage’s brain signature. The brain signatures on individual trials were

treated as samples from a normal distribution around the mean brain signature

for that stage. The durations of a cognitive stage were treated as samples from

a Gamma distribution for that stage. One of the important products of the es-

timation process for each trial is stage occupancy profiles (see Figure 2). These

are the probabilities that specific scans are in specific stages. The duration of a

stage within a trial was estimated as the product of the duration of a scan and

the sum of the probabilities that each scan on that trial was in that stage. Fi-

nally, Anderson and Fincham (2014) linked the ACT-R model (e.g. Figure 1) to

the HSMM by assuming that the duration of a subgoal in ACT-R corresponded

to the mean duration of the corresponding stage.

Tenison and Anderson (2015) did not use fMRI data to address the problem

of partitioning individual trials into stages; rather, they used problem-solving

latency data to address the issue of partitioning a sequence of trials into learning

phases (i.e., computation, retrieval, autonomous). Figure 3a shows the HMM

state structure that Tenison and Anderson used to address this ambiguity. There

was a different HMM state for each number of trials an item could spend in a

learning phase. This allowed the HMM to track speedup within a learning phase

due to practice. On any trial, the participant could transition to a faster HMM

state within that learning phase or transition to the first HMM state within
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Figure 3: The HMM analysis in Tenison and Anderson (2015): (a) The HMM state structure

used to keep track of amount of learning within three learning phases. For a particular item

practiced by a single individual in 3b we show the probability that a particular item was in

each of the learning phases on 36 trials. Phase 1 probability is indicated by the solid line,

Phase 2 as the dotted line, and Phase 3 as the dashed line. In 3c we show the observed latencies

for the practiced item modeled in 3b and the expected latency of that item if assigned to the

majority phase on each trial as suggested by 3b.

11



Learning Phase 1

Learning Phase 2

Learning Phase N

We tested 
models that had 
between 1 and 8 

phases

Encoding 
Cognitive Stage

Solving 
Cognitive Stage

Responding 
Cognitive Stage

MVPA - Brain Signature MVPA - Brain Signature MVPA - Brain Signature

Distribution of Stage Duration

0.000

0.025

0.050

0.075

0.100

0.125

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.0

0.1

0.2

0.3

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.000

0.025

0.050

0.075

0.100

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.0

0.1

0.2

0.3

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.00

0.05

0.10

0.15

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.0

0.2

0.4

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.0

0.2

0.4

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.000

0.025

0.050

0.075

0.100

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

0.000

0.025

0.050

0.075

0.100

0.125

0 10 20 30
Duration in Stage

Pr
op

or
tio

n

Distribution of Stage Duration Distribution of Stage Duration

Distribution of Stage Duration Distribution of Stage Duration Distribution of Stage Duration

Distribution of Stage Duration Distribution of Stage Duration Distribution of Stage Duration

Figure 4: The structure of the HSMM-MVPA used in the current study: Horizontally we show

how an MVPA analysis similar to the one represented in Figure 2 is used to identify distinct

cognitive stages and an HSMM is used to model the duration of time spent in each cognitive

stage. Vertically, we illustrate that differences in estimated duration of each cognitive stage

drive the transition to new learning phases

the next learning phase. Figure 3b shows, for one item practiced 36 times,

the inferred probability that it is in a particular learning phase, noted by the

different line types. Figure 3c shows the problem solving times on which those

inferences were based. As can be seen in Figure 3b, there is some ambiguity

about when Learning phase 1 ends and Learning phase 2 begins, and even more

ambiguity about the transition between Learning phase 2 and Learning phase

3. Figure 3c also shows the expected latency for each trial, assuming that trial

was in its most probable Learning phase. As that figure illustrates, the majority

of the speed up seemed to be between learning phases and not within learning

phases.

1.4. The current study

In the current study, as in Tenison and Anderson (2015), participants were

given a set of Pyramid problems, which they practiced 36 times over the course
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of the experiment. The goal of the current study is to extend the HSMM-

MVPA approach developed by Anderson and Fincham (2014) to identify what

the cognitive stages were within each of the learning phases identified by Tenison

and Anderson. Therefore, rather than Tenison and Anderson’s approach of using

latency to guide the estimation of an HMM and then using fMRI to examine the

qualitative structure of the resulting states, this paper uses fMRI to guide the

estimation of an HSMM (Figure 4), and then latency data and ACT-R modeling

to examine the properties of the resulting states. To reliably use fMRI for this

more ambitious goal, we used the same task as in Tenison and Anderson but

doubled the sample size. Ultimately, by identifying the cognitive stages within

each learning phase, our goal is to provide a more nuanced picture of the changes

in problem solving that occur with practice.

2. Methods

2.1. Participants

Forty university students (21 women; mean age 22/ SD 2.7) participated in

the study. The first 20 participants served as a basis for Tenison and Anderson

(2015). Participants gave informed written consent and received monetary com-

pensation for their participation. All participants were right-handed and had

normal or corrected-to-normal vision. The university ethics board approved the

study.

2.2. Materials and procedure

The current study only considers regular pyramid problems as described in

the introduction. Regular pyramid problems follow the form of base$height,

where the base indicates the first term in the additive sequence, and the height

determines the number of terms to be added together (e.g., 8$4 = 8+7+6+5).

Problem selection criteria were identical to Tenison and Anderson (2015) and

included problems with heights of 3, 4, and 5. The bases varied from 4 to 11

with the restriction that the minimum base for a given height was that height

plus one.
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Prior to entering the scanner, participants were taught how to compute

pyramid problems. The investigator explained the role of base and height in

constructing iterative additions to solve the problem, but rather than presenting

“4$3=X” as in Anderson and Fincham (2014,), we only presented “4$3”—which

means less visual encoding is required. After each problem was solved, the par-

ticipant received correctness feedback and instruction on how to solve the prob-

lem. This feedback was visually represented as the chain of additions required

to calculate the answer (e.g., 4$3 = 4 + 3 + 2 = 9). None of the problems used

in the practice session were used in the scan session. Participants also received

practice on using a numeric keypad that they would use in the scanner to input

the solutions to the problems.

Over the course of the experiment, each participant practiced solving three

problems, one of each height (i.e., 3, 4, and 5) repeated 36 times. Repeated

problems were chosen for repetition with nearly equal frequency across the 40

participants. The remaining 18 unique problems were presented twice, once

in the first half of the experiment and once in the second half (approximately

30 minutes passed between first and second exposure). We will refer to the

three practice problems repeated 36 times as repeated problems and to mirror

this distinction we refer to the remaining eighteen problems as non-repeated

problems despite the fact these problems were seen twice. In previous work

using this design, we used a concurrent strategy assessment and found that only

3% of these non-repeated problems were reported as retrieved, and we observed

no increase in reports of retrieval between first and second half of the experiment

(Tenison & Anderson, 2015). These results suggest that the repetition did not

impact problem-solving and it is possible that participants did not notice the

repetition in the second half of the experiment. We divided the experiment into

6 blocks of 24 problems during which each repeated problem occurred 6 times

and there were 6 non-repeated problems. Pyramid problems were presented on

the screen following a 2-second fixation period. Once the problem appeared on

the screen, the participant was allowed a maximum of 30 seconds to indicate

knowledge of a solution by pressing the return key on the numeric keypad.
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After pressing ’return’, participants had 5 seconds to input a solution using the

keypad and then press the return key. At the end of each problem solving trial,

a 1-back task was presented onscreen for a randomly selected time (between

6 to 12 seconds) to prevent reflection on the previous problem and allow the

hemodynamic response of the brain to return to baseline. In the 1-back task,

participants were asked to judge if the letter in the center of the screen was the

same as the previous letter seen. Further details of the experimental task and

protocol are provided in Tenison and Anderson (2015). Next, we focus on the

special processing of the fMRI data required for the HSMM-MVPA analysis.

2.3. fMRI data acquisition

Images were acquired using gradient echo-echo planar image acquisition on a

Siemens 3T Verio Scanner using a 32 channel RF head coil, with 2 s. repetition

time (TR), 30 ms. echo time, 79◦ flip angle, and 20 cm. field of view. The exper-

iment acquired 34 axial slices on each TR using a 3.2 mm thick, 64×64 matrix.

This produces voxels that are 3.2 mm high and 3.125 x 3.125 mm2. The anterior

commissure-posterior commissure line was on the 11th slice from the bottom

scan slice. Acquired images were pre-processed and analyzed using AFNI (Cox,

1996). Functional images were motion-corrected using 6-parameter 3D registra-

tion. All images were then slice-time centered at 1 sec and co-registered to a

common reference structural MRI by means of a 12-parameter 3D registration

and smoothed with an 6 mm full-width-half-maximum 3D Gaussian filter to ac-

commodate individual differences in anatomy. As a step of dimension reduction

and to accommodate variations in anatomy over participants that may not be

dealt with in co-registration, we aggregated the original voxels (3.2 mm high

and 3.125 x 3.125 mm2) in each slice into larger 2 × 2 voxel regions within a

slice. There are 12,481 such regions. Some of these regions show an excess of

extreme values for some participants, probably reflecting differences in anatomy;

these were regions mainly on the top and bottom slices, as well as some regions

around the perimeter of the brain. Eliminating these regions resulted in keeping

9,973 regions.
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The blood-oxygen-level dependent (BOLD) response is calculated as the per-

cent change from a linear baseline defined from first scan (beginning of fixation

before problem onset) to last scan (beginning of fixation before next problem).

The BOLD response is delayed from the brain activity that initiated it and

builds up over many seconds. The BOLD response is deconvolved with a hemo-

dynamic response function (HRF) to produce an estimate of the underlying

activity signal at a moment in time. The HRF in SPM is the difference of

Gammas: Gamma(6, 1)− Gamma(16,1)
6 (Friston, 2011). A Wiener filter (Glover,

1999) with a noise parameter of .1 was used to deconvolve the BOLD response

into an inferred activity signal on each scan.

The output of this process is an estimation of activity in 9,973 regions during

every 2-second scan. However, the 9,973 regions are not independent because

of high correlation among regions. To decorrelate the data and extract the

meaningful independent sources of information, we performed a spatial principal

component analysis (PCA) of the voxel activity where each voxel is treated as

a variable that varies over scans, trials, and participants. As in Anderson and

Fincham (2014,), we focused on the first 20 PCA components, which account

for 47% of the total variance in the data, which we assume captures mostly

systematic effects in the data. These 20 component scores are approximately

20 independent normally distributed variables. We standardize them to have

mean 0 and variance 1.

3. Results

Table 1 presents the summary statistics by condition (height, repetition) and

repeated measures ANOVAs for solution times for corrects, and keying times

for corrects. For problem solving accuracy, we use a mixed-effects logistic re-

gression with a random intercept for each participant. All three measures show

large and highly significant effects of repetition. The repetition effect on keying

is noteworthy because there is no difference in the number of characters that

have to be entered for non-repeated and repeated problems. There are also
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Table 1: Basic performance measures shown on the left side of the table. On the right side of

the table we show the results of an ANOVA for solving and responding times and the results

of a mixed-effects model of accuracy scores.

Height d.f F p-value

Repetition (R) 1, 39 139.5 <.001

Solving (sec)
Non-Repeated 4.7 7.5 9.5 Height (H) 2, 78 61.8 <.001

Repeated 2.2 2.9 2.5 RxH 2, 78 39.4 <.001

Repetition (R) 1, 39 74.2 <.001

Responding (sec)
Non-Repeated 2.1 2.2 2.2 Height (H) 2, 78 1.9 .16

Repeated 1.6 1.7 1.4 RxH 2, 78 1.5 .22

Slope (S.E.) z-value p-value

Accuracy
Repetition (R) 1.1 (.26) 4.4 <.001

Non-Repeated 83.9% 74.8% 70.3% Height (H) .11 (.08) 1.3 .2

Repeated 96.2% 92.6% 95.1% RxH .33 (.12) 2.8 <.005

Intercept -3.3 (.22) -15.1 <.001

highly significant effects of height on problem solving latency, as well as strong

interactions of height with repetition. Much of the interaction is driven by the

decrease in accuracy and increase in solving time for non-repeated items of in-

creasing heights. A different pattern is observed in repeated items. Similar to

non-repeated problems, height 3 repeated items are solved significantly faster

than height 4 items (t(39)=6.03, p <.005)1 and with greater accuracy according

to a Wilcoxon signed rank test(V=105.5, p <.005). The repeated items, how-

ever, show worse performance on height 4 items than height 5 items, which is

the opposite direction of the effect for non-repeated items. While small, the dif-

ference between height 4 and height 5 is significant both for accuracy (V=139,

p <.05) and solving time (t(39)=2.59, p <.05).

Because repetition had a major effect on keying time, in further analyses we

combined the solving and keying time as the total duration of problem solving,

and the fMRI analyses focused on the scans that combine the solving and keying

periods. Items in which participants timed out while solving or recording the

answer were included in our analyses. A total of .14% of items were not solved

within the 30 seconds provided for solving, and a total of 2.4% of solutions were

1All t-tests are 2-tailed.

17



0

5

10

15

0 10 20 30

Exposure

L
a

te
n

c
y
 (

S
e

c
.)

Non-Repeated  

Repeated

Height 3 

Height 4 

Height 5 

Figure 5: Latency of problems by height at different points in the experiment. Data are plotted

separately for repeated and non-repeated problems. The points represent the observed mean

times and the lines are the best fitting power functions of the form α n -B

not keyed in within the 5 seconds allotted. We also chose to include both correct

and incorrect items under the assumption that participants were attempting to

execute the same algorithms for both correct and incorrect solutions. Figure

5 shows the latency as a function of amount of practice (which for repeated

problems means the number of times that problem has been repeated while for

non-repeated problems it means how many non-repeated problems have been

seen). Purely for descriptive purposes, it also shows best-fitting power functions

of the form αn−β where n is the number of repetitions. While the speedup for

non-repeated items is small, the coefficient of a linear regression of non-repeated

latency on exposure reflects a significant speed up (t(39)=4.79, p <.0001). Both

repeated and non-repeated items start out showing a large effect of height, but

for the repeated items the height differences compress rapidly with continued

exposures. There is an interesting crossover between height 4 and height 5

repeated items. Height 5 items are slower on first presentation by 3.38 seconds

(t(39) = 3.62, p <.001), but by the second half of the experiment they average

.59 seconds faster (t(39) = 3.57, p <.001). The difference between height 3 and
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Figure 6: Performance of different numbers of learning phases in LOOCV.

5 repeated problems disappears in the second half of the experiment (in the

second half, height 3 are 2.97 seconds and height 5 are 2.88 seconds, t(39) =

0.60, p <.5).

The remainder of this Results section consists of three parts. First, we

will describe how we used the HSMM-MVPA method to provide a bottom-up

characterization of the structure of the task and the phases of learning. Second,

we will enrich this characterization using the top-down guidance of an ACT-R

model of the task. Third, with the theoretical interpretation in place, we will

investigate the learning mechanisms that are responsible for both transitions

between learning phases and learning within cognitive stages.

3.1. Bottom-up stage analysis: cognitive stages within learning phases

Our analysis of the data will track the cognitive stages that participants go

through within different learning phases. As we described in the introduction,

Tenison and Anderson (2015) have found evidence that participants go through

three learning phases as these problems are practiced. Anderson and Fincham

(2014) found evidence that during a single trial on these items participants go

through three cognitive stages in the solution of a Regular problem: Encoding,

Solving, and Responding. Figure 4 illustrates how to put these two analyses
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together into a single HSMM. Across 36 trials of a repeated problem, we assume

that participants progress through some number of learning phases. At the trial

level within any particular learning phase, they transition through the three

cognitive stages. After completing the Responding stage of one problem they

can return to the Encoding stage within the same learning phase for the next

problem or graduate to the Encoding stage of the next learning phase. The

brain signature for any particular cognitive stage is assumed to be constant

across all learning phases; however, the durations of the stages can vary across

learning phases, with the expectation that they will decrease and some may

effectively shrink to zero. We assume durations of stages are sampled from

Gamma distributions. As in Anderson and Fincham (2014), we estimated just

one scale parameter per cognitive stage for each learning phase (i.e., if there are

N learning phases, we estimated 3×N scale parameters), but we also estimated

a separate shape parameter to vary for each of the 21 problems (i.e. 3× 21×N

shape parameters if we assume N learning phases)2.

The estimation process involved fitting the data from both the repeated and

non-repeated items. All problems started in Learning phase 1 and repeated

problems could graduate to a later phase with some probability after each trial.

The non-repeated items (i.e. the 18 items seen twice) were coded as 36 unique

trials and therefore were only estimated to be in Learning phase 1. In addition

to estimating brain signatures and stage durations, we estimated this gradua-

tion probability between each pair of successive learning phases, assuming that

graduation probability applied equally for all problems. For each item solved

by each participant the model generates a) the likelihood of belonging in each

learning phase and b) the estimated time spent in each cognitive stage within

those phases. This avoids issues associated with averaging learning data (Myung

et al., 2000; Heathcote et al., 2000; Haider & Frensch, 2002). We conducted a

2This can be conceived of a stage involving different numbers of steps for a problem (shape

parameter) that each take a fixed time (scale parameter), but the real motivation is to limit

the number of free parameters.
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Figure 7: The brain signatures of the 3 stages involved in solving regular pyramid problems.

(a) Anderson and Fincham (2014b); (b) Current Experiment. Dark red reflects 1% above

baseline while dark blue reflects 1% below baseline activity. The z coordinates for a brain

slice (radiological convention: image left = participant’s right) is at x=y=0 in Talairach

coordinates.

leave-one-participant-out-cross-validation (LOOCV) to determine the number

of learning phases that best described the data. This involved fitting the data

to 39 participants and using the parameters to calculate the likelihood of the

data from the 40th. Figure 6 shows the results in terms of the average partici-

pant log likelihood gain over the simplest case of a 1-Learning phase model. The

results are particularly clear; three learning phases improves the predictions for

all 40 of the participants over fewer learning phases, while additional learning

phases offer no further improvement. This confirms the conclusion of Tenison

and Anderson (2015) that there are three phases of skill acquisition.

Figure 7 compares the brain signatures for the three cognitive stages of prob-

lem solving identified by Anderson and Fincham (2014) (Figure 7a) with the

brain signatures for this experiment (Figure 7b), which were estimated indepen-

dently. The correspondence is quite striking. Specifically, the mean correlation

among corresponding stages between the experiments is .92 (compared to the
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Figure 8: Estimated mean time in each cognitive stage during each learning phase.

mean between-experiment correlation of .78 for non-corresponding stages across

experiments and .82 for the mean correlation between non-corresponding stages

within both experiments)3. The mean absolute difference in voxel activations

for corresponding stages between the experiments is small, averaging a 0.11%

difference (compared to the between-experiment difference of 0.30% for non-

corresponding stages and 0.16% between non-corresponding stages in the first

experiment and 0.19% in the second experiment).

For each problem, we obtained a weighted average of the estimated time

spent in each cognitive stage within each learning phase. This average was

computed as the sum of stage occupancies in that stage (Figure 2) divided by the

probabilities that the problems were in that learning phase (Figure 3b). Figure 8

shows the resulting mean times spent in each stage organized by height. In order

to measure the effect of height, we performed a mixed-effects ANOVA where we

treated the 21 problems as random effects and the cognitive stages and learning

phases as fixed effects. Of the 9 cognitive stages only one shows a significant

effect of height and it shows it quite strongly: the Solving stage in Learning

phase 1 (F(2,18)=106.96). Every height 3 problem has an estimated duration

3These statistics are for the 8,245 regions the two studies have in common
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in this stage shorter than any height 4 problem, which has an estimated duration

shorter than any height 5 problem. Thus, even though this estimation process

has no information about the height of problems or about the interpretation

of the phases, it finds that the effect of this height is on Solving stage and

only in Learning phase 1. The Solving stages for Learning phases 2 and 3

are estimated to be strikingly brief (.07 and .03 seconds), in contrast to the

times for the Solving stage in Learning phase 1. While the Encoding stage does

not show an effect of height, it shows a steady decrease with learning phase:

3.26 seconds in Phase 1, 2.44 seconds in Phase 2, and 0.54 seconds in Phase 3.

Pairwise comparisons of Phases 1 and 2, and Phases 2 and 3 are quite significant

(t(20)=8.94, p <.0001 and t(20)=17.59, p <.0001). The Responding stage also

decreases across the learning phases (2.68, 2.32, and 2.20 seconds), but only the

decrease from Learning phase 1 to 2 is significant (t(20)= 3.28, p <.005).

The passage through the learning phases is the major factor driving the

decrease in times that we see in Figure 5. However, more is happening than

just a decrease in time. The proportion of time in different cognitive stages is

dramatically changing—it is roughly equally divided among the three cognitive

stages in Learning phase 1, the Solving stage nearly disappears in Learning

phase 2, and the Encoding stage shrinks dramatically in Learning phase 3. We

now turn to an ACT-R model of what is happening in these three learning

phases.

3.2. Top-down theory-driven analysis: identity of cognitive stages and learning

phases

Figure 9 shows the ACT-R models for performance in the three learning

phases, in each case solving the problem 8$4. As mentioned in the introduction,

a standard model for speedup is learning the answer and retrieving it, and this

is what drives the transition from Learning phase 1 to Learning phase 2. A

further phase of learning can happen within ACT-R when a new production

rule is learned that directly maps the stimulus to the response without any

retrieval. This is what is driving the change from Learning phase 2 to Learning
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Figure 9: A swimlane representations of the engagement of ACT-R modules during the three

learning phases when solving 8$3.

phase 3. We will now describe the details of the ACT-R processing in each of

these learning phases.

Learning phase 1. The model for Learning phase 1 is the minimal adaption

of the model in Anderson and Fincham (2014) (Figure 1) to correspond to

the current task. Only three characters are presented, rather than the five

in Anderson and Fincham (2014), and so the visual encoding is reduced. On

the other hand, we assume that during the Encoding stage participants check

problems to see if they have a stored answer. The long retrieval in the Encoding

stage reflects the failed effort to retrieve an answer. The Solving stage has

identical structure to Anderson and Fincham. The Responding stage differs

from Anderson and Fincham only in that there is an additional key press to

begin the keying of the answer.

Learning phase 2. The major difference between Learning phase 1 and Learning

phase 2 is that the answer is retrieved and there is no need for a Solving stage.

The Encoding stage is briefer because the retrieval process succeeds in this stage

before it would have timed out in Learning phase 1. In addition, we assume

that the participants now skip the encoding of the dollar-sign operator, and
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Figure 10: ACT-R predictions of mean time in each cognitive stage during each learning

phase.

rather just encode base and height. In contrast to what might be concluded

from the analysis in Figure 8, there is no shortening of the Responding stage in

the model.

Learning phase 3. In the third learning phase, the problem is recognized as a

single unit and a production maps this onto the response, resulting in a very

short Encoding stage. The Responding stage is a bit faster because there are

no longer visual checks of whether the correct keys are actually struck.

The times of the cognitive stages are determined by how long the individual

modules take. We used the timing parameters from Anderson and Fincham

(2014). The only additional parameters estimated were the time for failed re-

trieval (1.35 sec.), which influences the time of the Encoding stage in the first

learning phase, and the time of the successful retrieval (0.95 sec.), which influ-

ences the time of the Encoding stage in the second learning phase. Figure 10

shows the ACT-R times for the stages according to the models for each learning

phase. It shows large effects of height only for the Solving stage of the first

learning phase because height controls the number of additions that need to be

performed in that stage.
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As in Anderson and Fincham, these times can form the basis for an HSMM

by constraining the HSMM to have a Gamma distribution of times in a stage

for a problem with the mean time of the ACT-R model. Then, we estimate

just a single scale parameter a per cognitive stage for each learning phase.

Given the model’s mean time t for each stage of each problem, we can di-

rectly compute the shape parameter for a stage as t/a. This contrasts with the

model fit in procedure used in the HSMM-MVPA technique where we also es-

timate a shape parameter per stage per problem. Thus, rather than estimating

3 stages×3 learning phases×21 problems = 189 distributional parameters, we

just estimate 7 scale parameters (there is no Solving stage for Learning phases

2 and 3). In LOOCV, this model-constrained HSMM outperforms the uncon-

strained HSMM-MVPA model, fitting 28 of the 40 participants better than the

3-stage unconstrained HSMM (significant by a sign test, p <.005). Its mean log-

likelihood advantage is 6.0 per subject. The brain signatures of corresponding

stages for the unconstrained and the model-constrained fit are essentially iden-

tical (an average .997 correlation for the 20 PCA scores that define these brain

signatures). So the advantage of the model-constrained approach in LOOCV is

that it avoids the overfitting of the many time parameters.

While there is a strong correlation between the estimated model times shown

in Figure 10 and the bottom-up estimates shown in Figure 8, they are not

identical. The estimation of so many parameters in Figure 8 is problematic in

that, in principle, many different combinations of parameters can yield nearly

identical fits. The top-down constraints of ACT-R serve to indicate which of

these nearly equivalent fits will generalize better.

While the HSMM-MVPA analysis uses whole brain activation, the ACT-R

model makes predictions for activity in specific brain regions (Anderson, 2007).

As discussed by Anderson and Fincham (2014), these brain regions are selected

because they are consistently active across diverse tasks that share similar de-

mands on specific ACT-R modules. Figure 11 shows the brain mappings of the

5 modules used in our model (Figure 9). We used the stage occupancy probabil-

ities from the HSMM model to estimate brain activity in each of these regions

26



Learning Phase 1Learning Phase 2Learning Phase 3

−0.005

0.000

0.005

0.010

EncodeSolveRespondEncodeRespond Collapsed
Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

Predicted

Actual Region

Module Prediction

Learning Phase 1 Learning Phase 2 Learning Phase 3

-0.003

0.000

0.003

0.006

Encode
Solve

Respond

Encode

Respond

Collapsed

Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

Learning Phase 1 Learning Phase 2 Learning Phase 3

0.000

0.004

0.008

Encode
Solve

Respond

Encode

Respond

Collapsed

Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

Learning Phase 1 Learning Phase 2 Learning Phase 3

0.000

0.005

0.010

Encode
Solve

Respond

Encode

Respond

Collapsed

Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

Learning Phase 1 Learning Phase 2 Learning Phase 3

0.000

0.002

0.004

0.006

Encode
Solve

Respond

Encode

Respond

Collapsed

Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

Learning Phase 1 Learning Phase 2 Learning Phase 3

0.0000

0.0025

0.0050

0.0075

0.0100

Encode
Solve

Respond

Encode

Respond

Collapsed

Cognitive Stages

Pe
rc

en
t A

ct
iv

at
io

n

R = .908

R = .914

R = .924

R = -.473

R = .985

Motor-Manual

PPC-Imaginal

Fusiform-Visual

LIPFC-Retrieval

RLPFC- Metacogntive

Motor

PPC

Fusiform

LIPFC

RLPFC

Figure 11: Average activation in predefined brain regions as a function of cognitive stage within

learning phase and the predictions based on module activity: Rostrolateral prefrontal cortex

(RLPFC—Metacognitive module): a 12.8 mm. (high) by 15.6 x 15.6 mm2 region centered at

Talairach coordinates -34,47,8; Lateral inferior prefrontal cortex (LIPFC —Retrieval module):

a 12.8 mm. (high) by 15.6 x 15.6 mm2 region centered at Talairach coordinates -43,23,24

spanning Brodmann Areas 9 and 46; Posterior Parietal Cortex (PPC—Imaginal module): a

12.8 mm. (high) by 15.6 x 15.6 mm2 region centered at Talairach coordinates -23, -63,40

spanning Brodmann Areas 9 and 46; Motor—Manual module: a 12.8 mm. (high) by 15.6 x

15.6 mm2 region centered at Talairach coordinates -42, -19, 50, involving Brodmann Areas 2

and 4 at the central sulcus; Fusiform—Visual module: a 9.6 mm. (high) by 12.5 x 12.5 mm2

region centered at Talairach coordinates -42, -60, -8 in Brodmann Area 37.
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for the three cognitive stages in Learning phase 1, the two cognitive stages in

Learning phase 2, and the combined Encoding and Responding stage in Learn-

ing phase 34. The two stages in Learning phase 3 were combined because the

Encoding stage was too brief for accurate estimation. Figure 11 compares these

brain activation measures derived from the HSMM-MVPA model against pre-

dictions from the proportion of time a module was engaged in a stage according

to the ACT-R model. To get the predictions we regressed these modules pro-

portions against the activity measures to obtain an intercept (baseline activity

in the region) and a slope (how activity in the region scaled with activity in

the module). While we estimated these parameters to get the predictions dis-

played in Figure 11, the correlation between the activity measures and module

proportions provide parameter-free measures of the correspondence. Except for

the Posterior Parietal Cortex (PPC) these correlations are greater than .9. The

PPC correlation is negative, but the activity is quite high during all stages. As

can be confirmed from Figure 9, the Imaginal module is engaged at a relatively

constant rate during all stages. Thus, there is not much predicted variance to

correlate with. The other modules all have distinctive patterns of engagement

across stages which is confirmed by the activation in the corresponding regions:

The Retrieval module is most engaged during the Encoding stage of Learning

phase 1 and 2 where retrieval is engaged, and then in Solving stage of Learning

Phase 1 when addition facts need to be retrieved. The Retrieval module is least

engaged in the Response stages. The Metacognitive module is only engaged

in Encoding stages of Learning phases 1 and 2 when the decision to compute

4We created a design matrix (Friston, 2011) that had 10 variables associated with each scan

of each problem. There were 6 stage regressors and 4 binary variables indicating whether or not

a scan occurred during fixation, feedback, repetition-detection, or problem-solving. The stage

regressors are just the stage occupancy probabilities that the scan was in that cognitive stage

and learning phase (see Figure 2). These were then convolved with the SPM hemodynamic

function and regressed against activity in that region to get an estimate of activity associated

with each variable. The values plotted in Figure 11 are the estimates associated with the 6

stage regressors.
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or use retrieval is being made. The Manual module5 is only engaged during

the Responding stages; and the Visual Module is engaged in all stages but the

Solving stages. The correspondence is not perfect: except for the Rostrolateral

prefrontal cortex (RLPFC) and Lateral inferior prefrontal cortex (LIPFC), the

predicted values fall sufficiently outside of the standard error of the estimates

as to be significant. Nonetheless the correspondences are striking and support

our interpretation of the cognitive stages.

3.3. Analysis of Learning

The fits we have considered so far have focused on performance within the

three learning phases and have not considered the learning factors that are

driving the transitions between phases or the possible learning within a learning

phase. We can obtain from the HSMM-MVPA probabilities, prob(i,k), of an

item being in learning phase i on any of the 36 trials k. These probabilities will

allow us to explore a number of issues relevant to learning.

Figure 12 shows the average probabilities, prob(i,k), that for each height

the repeated problems are in one of the learning phases over the 36 trials6.

It also shows the predictions from the model given the transition probabilities

are the same for all heights. These are derived from the estimated per-trial

transition probabilities between phases (.202 from Phase 1 to Phase 2 and .094

from Phase 2 to Phase 3). Table 2 shows the mean number of trials in each

phase (summed probabilities over the 36 trials). There are significant differences

among the number of trials spent in Learning phase 1 for the three heights

(F(2,78)=9.05, p <.0005) and Learning phase 3 (F(2,78)=8.73, p <.0005), but

only a marginal effect in Learning phase 2 (F(2,78)=3.10, p <.1). Pairwise t-

tests confirm significant difference between height 3 and 4 (t(39)=3.63, p <.001

for Learning phase 1; t(39) = 2.58, p <.05 for Learning phase 3) and between

height 4 and 5 (t(39)=3.07, p <.005; t(39) = 4.17, p <.0005) but not between

5The counting in the Solving stage is associated with the left hand and right motor region.
6These are estimated from the ACT-R HSMM.
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Figure 12: Average probability of a trial being in each phase on each of 36 repetitions of a

problem. In red we show the model prediction of the probability of learning phase given the

transition probabilities.
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Table 2: Number of Trials in each phase for Repeated problems and Model Predictions

Mean Number of Trials

Phase 1 Phase 2 Phase 3

Height 3 3.6 10.4 22.0

Height 4 6.8 11.7 17.5

Height 5 3.8 7.8 24.4

Model 5.6 10.9 19.6

heights 3 and 5 (t(39)=.23; t(39) = 1.49). Basically, participants take longer to

leave the first learning phase for height 4 problems and consequently get to the

last learning phase later and so, spend fewer trials in it. This resulted in the

longer average latencies for height 4 problems (Table 1 and Figure 5), but no

difference in estimated stage occupancies in Learning phases 2 and 3 in Figure

8.

Our interpretation of the probability of transitioning between Phase 1 and

Phase 2 is that it reflects probability of memorizing the answer. If this interpre-

tation is correct, then height 4 problems might be harder to memorize even if one

did not know their mathematical interpretation. To test whether or not this was

true, we ran an Amazon Mechanical Turk experiment with 100 participants who

were just asked to memorize paired associates consisting of a stimulus like 8$4

and a response like 26, without any mathematical explanation (see Appendix A

for experimental details). As material, we used the pyramid problems from this

experiment. Focusing on the 65 participants who performed between 20 and 80

percent correct, the mean recall probabilities were .63, .37, and .63 for heights 3,

4, and 57. The mean difference between height 4 and the other two was highly

significant (t(64)=9.86, p <.0001). We speculate that the reason height 3 and

height 5 problems are easier to memorize is because they overlap multiplica-

tions facts—n$3 is always similar to a multiple of 3 (e.g., 8$3 = 21 = 7 × 3),

7We chose this focus to avoid participants who were not trying or perhaps copying answers.

For all participants the probabilities were .72, .56, and .71 (t(99)=7.69, p <.0001).
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n$5 is always similar to a multiple of 5 (e.g., 8$5 = 30 = 6 × 5), but n$4 is

not a multiple of 4 (e.g., 8$4 = 26). Whether this speculation is correct or not,

the Mechanical Turk results support the interpretation of the transition from

Phases 1 to 2 as a matter of remembering the answer.

3.3.1. Contrasting the theoretical assumptions of learning with the practical as-

sumptions of our model

While hidden Markov modeling offers dynamic programing solution for iden-

tifying cognitive stages and learning phases involved in skill acquisition, there

are assumptions which underlie the semi-hidden Markov model we used in this

paper. The Markov property, which is central to the model we use, assumes

that each state is dependent only upon the previous state. This assumption

informs additional assumptions governing both transitions between phases and

durations within cognitive stages. We investigate here the degree to which the

assumptions of HSMM theory and the assumptions built in the structure of our

model are met in this paper’s HSMM-MVPA model. The Markov assumption,

which underlies our estimation software, implies that the future behavior of the

model depends only on what learning phase it is in on the current trial and does

not depend on how long it has been in that phase. This assumption is not true

of the ACT-R model or a number of other models of skill acquisition. It was

also not true of the Tenison and Anderson (2015) model (Figure 3), where there

was a different HMM state to keep track of the number of trials in each learning

phase; however, we can use the results that we have obtained to test for possible

deviations from the assumptions in the current model. As we have already seen

with respect to the differences in latency and learning rate for problems of dif-

ferent heights, just because an assumption is built into the estimation process

(such as the assumptions that behavior across heights is uniform), we are not

prevented from gathering evidence from the estimation process that it is wrong.

We will use the estimated prob(i,k) to explore three issues where the HSMM

assumptions are at odds with common assumptions about skill acquisition.
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Issue 1: Sigmoidal phase transitions. The Markov property assumes that on ev-

ery trial there is a constant probability p of transitioning into the next Learning

phase. If p is the probability of transitioning from Learning phase 1 to Learning

phase 2, the probability that the transition from Learning phase 1 to Learning

phase 2 will occur on trial n is

p12(n) = p× (1 − p)(n−1) (1)

This exponential learning function is not what many models of learning

would imply, including the ACT-R model. Repeated encounters with a memory

in ACT-R increase the strength of the memory as a logarithmic function and

when the memory exceeds a threshold it can be recalled. The probability of

being able to recall an item on the nth trial (i.e., advancing to Learning phase

2) is

p12(n) = normal(log(n), τ, σ) (2)

where τ is the threshold and σ represents the variability of individual items8.

The exponential function implies that the first trial will be the trial of maximum

transition while the sigmoidal function allows for the possibility that the trial

of maximum transition can be later. Transition between Learning phases 2

and 3 is driven by production compilation. The newly formed production has

to build up enough utility to be preferred over the older production. Because

of variability in utility, the transition probability for using a new production

follows a similar sigmoidal function (Figure 5.10 in Anderson (2007)). To test

between the exponential (1) and sigmoidal (2) transition functions, we examined

whether our estimated state occupancies better fit the exponential equation

or the sigmoidal equation. While we have indicated a basis for the sigmoidal

8In ACT-R the variability σ in this equation both reflects variability in items and partic-

ipants, and variability in trial-to-trial activation for a single item. The latter allows for the

possibility that an item may regress from a later learning phase to an earlier learning phase

as discussed previously. In this analysis we assume all of the variability is among items.
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Table 3: Fit of Exponential and Sigmoidal Learning Equations

p for p for Log

1-2 transition 2-3 transition likelihood

Exponential Equation

Height 3 .23 .07 -257.7

Height 4 .15 .05 -287.3

Height 5 .28 .09 -251.2

Total -796.3

τ for τ for Log

1-2 transition 2-3 transition likelihood

Sigmoidal Equation

Height 3 .41 2.3 -254.5

Height 4 1.3 2.7 -286.6

Height 5 .8 2.2 -248.8

Total -789.9

equation in ACT-R, the assumption is not unique to ACT-R. So we are really

testing two general theories about the likelihood of transition between learning

phases.

We fit the exponential learning equation (1) and the sigmoidal learning equa-

tion (2) to the probabilities, prob(i,k), of being in the three phases. To make

the parameters of the sigmoidal and the exponential models equal we set σ in

the sigmoidal equation to 1. For each repeated problem the HSMM delivers 108

prob(i,k)’s of being in one the three phases i on one of the 36 trials k. If p12(n)

is the theoretical probability of transitioning between Learning phase 1 and 2

after n trials in Learning phase 1 and p23(n) is the theoretical probability of

transitioning between Learning phase 2 and 3 after n trials in Phase 2, then the

probability of the estimated prob(i,k)’s for an item is

36∑
i=1

36∑
j=i+1

[p12(i) × p23(j − i)

i∏
k=1

prob(1, k)

j∏
k=i+1

prob(2, k)

36∏
k=j+1

prob(3, k)] (3)

The exponential and sigmoidal equations differ in their calculation of p12(n)

and p23(n). We fit these models to the data allowing for separate parameter
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Figure 13: Estimated probability of transitioning between the learning phases according to

the two learning equations.

estimates for heights 3, 4, and 5. Table 3 shows the parameters estimated for

the two models. These parameters again confirm the difficulty of transitioning

out of Learning phase 1 when practicing height 4 problems (either in the lower

transition probability for the exponential equation or the increased threshold for

the sigmoidal equation). Figure 13 contrasts the estimated probabilities of tran-

sitioning between phases according to the two models, averaging over the three

heights. As can be seen, the maximum trial of transition is delayed according

to the sigmoidal equation relative to the first trial prediction of the exponential

equation. The sigmoidal equation provides slightly better fits in terms of log

likelihood for all three heights. Since the number of parameters for the two

models is equivalent we can double the total log likelihood difference to get a

Bayesian Information Criterion (BIC) difference of 12.7, which provides strong

support of the sigmoidal equation as the best fitting model. Given that we were

using state occupancies estimated from a Markov model, which embodies the

exponential assumption, the fact that a sigmoidal function does better suggest

there is a delay in the trial of maximum transition.
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Issue 2: Within-phase speedup. Another assumption of the Markov property is

that the duration of all trials in a learning phase should have the same average

duration. However, a number of models reviewed in the introduction, including

ACT-R, allow for within-phase speedup. In the ACT-R model, there should be

speed up in both the first and second learning phases since both involve retrieval

of new declarative information. In Learning phase 1 this occurs during the

Solving stage where mathematical retrievals are required in order calculate the

pyramid value, while in Learning phase 2, this occurs during the Encoding stage

where participants practice retrieving the newly learned information about the

value of a specific pyramid problem. Tenison and Anderson (2015) fit models to

latency data that had within-phase speedup or no speedup and found evidence

for shallow within-phase speedup as illustrated in Figure 3c. They did not

address whether separate phases might speed up and others not, but rather

tested an assumption of uniform within-phase speedup versus none.

To address this issue we fit 9 separate power functions of the form αn−β

for the 3 × 3 combinations of learning phase and height. We have no strong

commitment to the power function; it is just being used as representative of

a negatively accelerated speed up9. For each item for each individual on each

trial n, we measured the prediction error as the sum of the squared differences

between the predicted and observed times for each phase weighted by the prob-

ability that the item was in that phase on that trial:

3∑
i

prob(i, n)(Aijn
−bij − t(n))2 (4)

where Aij is the scale and bij is the exponent associated with phase i and

height j. With 9 combinations of phase and height and 2 parameters there are 18

potential parameters to estimate, but there proved to be considerable potential

9Tenison and Anderson (2015) could not discriminate between exponential and power

speedup for their data but did find evidence for a power law in a reanalysis of data from

Rickard (1997). The fits of a power law to both datasets estimated a 0 intercept as in the

power function we are using here.
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Table 4: Parameter estimation for speed up modeling

Number of Residual sum

Model comparison parameters of squares BIC

Full model 18 15,738 5735.7

1 Exponent per phase 12 15,894 5727.9

Exponent only in Phase 1 10 15,911 5716

3 Scales only for Phase 1 6 15,925 5685.3

for parameter simplification. Table 4 summarizes the search process as we went

from the full model to simpler models. The first line gives the full model with

all 18 parameters, which has a residual sum of squares (RSS) of 15,738. From

this we can calculate the BIC measure as

BIC = n× log(
RSS

n
) + k × log(n) (5)

where n is the 4,320 observed latencies and k is the number of model pa-

rameters. The lower BIC values reflect better model fits, so as the number of

parameters a model uses increases the better the fit must be for those param-

eters to be justified. Estimating a single exponent per learning phase leads to

a reduction of 6 parameters and a decrease in the BIC measure of 7.8. The

question of whether there is speed up in a phase comes down to the question of

whether the exponent for that phase is non-zero. We did a search of the 8 (i.e.,

23) possible restrictions of the exponent to zero for phases and the best fitting

model only estimated a learning exponent for the first phase. The closest com-

petitors also estimated an exponent either for the second phase or third phase

but both had a BIC measure 6.1 larger. The model with just an exponent for

the first learning phase has a BIC measure more than 10 less than the model

that assumes exponents for all phases, and almost 60 less than a model that has

no learning exponents. It turns out that we can further simplify the model by

assuming that the scale factor varies with height for only Learning phase 1. The

parameter estimates of the final model are given in Table 5. The Phase 1 factor

in Table 5 increases about 2 seconds with each height, which corresponds to the
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Table 5: Parameters of best-fitting speed up model.

Phase 1 Phase 2 Phase 3

Exponent Height 3 Height 4 Height 5 Factor Factor

0.077 9.4 11.8 14.0 4.8 2.7

magnitude of the effect of height on the Solving stage for Learning phase 1 (see

Figure 10). The exponent for the first learning phase, .077, is rather small but

it does imply a speedup of more than a second during the average time that

a problem is in Phase 1. So, even with an HSMM estimation that assumes a

constant time in a stage, there is evidence for speed up in the first stage. We

should note that the failure to find evidence for speed up in the other phases

does not mean that there was not speedup in these phases, only that it was not

substantial enough to justify the estimation of the additional parameters.

Issue 3: Regression to earlier learning phases. In the Markov model we em-

ployed, once a learning phase has been reached the model either stayed in that

phase or graduated to a later learning phase. There was not the possibility of

regressing back to an earlier learning phase. This is in contrast to many mod-

els of learning that assume retrieval failures and successes can alternate, with

probability of success increasing with practice (Rubin et al., 1999; Averell &

Heathcote, 2011). Similarly in ACT-R, while a newly formed production rule

increases in its probability with usage, it remains possible to regress back to

using an older procedure. Depending on the steepness of the learning curve,

such backward regressions can be common or rare. To assess whether there are

backward regressions, we need to independently assess what phase a participant

has reached on a trial and whether they have regressed on that trial.

The calculation of phase occupancy probabilities prob(i,k) can be decom-

posed into two components that allow a separation of what the history implies

about the phase of an item and what phase the item is actually in on a trial.

First, the fMRI signal on trial k by itself provides some information about the

phase on that trial: signal(k,i) will denote the probability of phase given that
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Figure 14: The values are the average context and signal probabilities for each decile of the

context probability. They are based on the context and signal probabilities for each trial.

signal10. Second, the signals on all prior and subsequent trials, in conjunc-

tion with the transition probabilities, provide evidence as to what the phase

should be independent of the signal on that trial: context(k,i) will denote the

probability from the context. With three learning phases we can write:

prob(i, k) =
context(i, k) × signal(i, k)∑3
i=1 context(i, k) × signal(i, k)

(6)

The two quantities, context(i,k) and signal(i,k) can be calculated indepen-

dently will allow us to assess whether there has been a regression to an earlier

trial.

There is a fairly strong relationship between the context probabilities and

the signal probabilities. Figure 14 shows how the signal probabilities for the

10The HSMM-MVPA analysis calculates the log conditional probability of the imaging data

given each state. This can be converted into the probability that is signal(k,i) by assuming

each state is equally likely.
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three learning phases vary as a function of the context probabilities. While this

is aggregated data, the individual trial probabilities are also quite correlated (r

= .718, .544, and .743 for learning phases 1 through 3). The signal probabilities

tend to be less extreme (standard deviation of .33 across trials) than the context

probabilities (standard deviation of .43). This implies that the net force of the

context of a trial is more informative about its phase than the signal. In some

cases, this is particularly obvious. For instance, on the first trial an item must

be in Learning phase 1. Thus the context probability for Phase 1 on this trial

is 1 in these cases while the average signal probability is 0.6.

We looked for cases where there was strong disagreement between the con-

text and the signal, specifically situations in which the context strongly implied

that the participant was in a later learning phase than was implied by an equally

strong signal. These are cases where it is likely that participants regressed to

a previous learning phase. For instance, there are 27 trials (.6% of all trials)

where the context probability of being in Learning phase 1 is less than 0.1 but

the signal implies a probability greater than .9. One might suspect these of

being cases where the participant has regressed back to calculating the answer.

Similarly, there are 68 trials (1.6% of all trials) where the contextual probability

of being in the Autonomous Learning phase 3 is greater than .9 and the signal

probability is less than .1. One might suspect these are cases where the partic-

ipant has regressed from the Autonomous learning phase. Even if there were

not regressions, we would expect a few random occurrences of discordant cases

like this (while the probabilities are extreme, they are not 0 and 1). However,

in Appendix B we show that these frequencies are greater than would be ex-

pected by chance from the context and signal probabilities. Thus, despite the

assumption of no backwards transitions we used to do our modeling, we have

evidence that participants can slip back a phase for a single trial, as would be

expected by many learning models.
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3.3.2. The impact of the Markov assumption and our modeling decisions

While the violations we have identified of the Markov model are not par-

ticularly large, one can ask why we premised our estimation on a model that

embodies such assumptions. The answer is that it enabled us to use the HSMM

machinery to track the trajectory of individual problems and estimate param-

eters. The average repeated problem involved anywhere from 41 to 165 scans

(mean 76.3) over the 36 repetitions. There are 9 cognitive stages (3 stages for

each learning phase). If we had to consider each possible interpretation of the

history of a problem that covered N scans over its repetitions we would be con-

sidering at 9N interpretations per problem. The Markov assumption, which is

the source of the violation of Issues 1 and 2, is that future behavior only depends

on current state. This enables efficient computation of the implications of all of

these interpretations without separately computing each.

Beyond violations of the Markov assumption, we introduced the assumption

that there was no regression to previous Learning phases when building our

model (Issue 3). We could have put backward transitions into an HSMM, but

we judged that, in combination with the Markov assumption, this would lead

to a very implausible model of human learning. The probability of a backward

transition cannot change with duration in the phase, so if added to the model

it would be just as likely to have a failed recall trial after the first successful

recall trial, as after a sequence of 10 successful recall trials. Also, once having

transitioned backward, it might take a good number of trials to get back to the

original phase because the return would be governed by the original transition

probability. Another possibility would be to have a different HMM state for

each combination of numbers of trials in different phases, as in Tenison and

Anderson (2015), but including backwards transitions in this model would have

led to an explosion of phases and parameters. The current approach seemed

the best method for tracking the specific phase history of each problem, which

was our major goal. This tracking enables us to identify new detailed features

of the learning process and has not prevented us from identifying places where
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the simplifying assumptions in our analysis machinery were not exactly right.

4. Discussion

This research examines the underlying learning phases and cognitive stages

that occur when participants practice a novel procedure. On average, their

solution times decrease from about 12 to about 3 seconds over the course of

36 practice opportunities (Figure 6). The current study uses an fMRI-guided

approach to come to the same conclusion as the Tenison and Anderson (2015)

findings that used a latency-guided approach. Both approaches find that partici-

pants go through three qualitatively distinct learning phases. The more detailed

analysis of trial structure in this paper has allowed us elucidate finer details of

the structure of the three learning phases. In the first learning phase, where

calculation dominates, participants solved problems by moving through three

cognitive stages: Encoding, Solving, and Responding, with the Solving stage in-

volving a sequence of additions determined by the problem’s height. On average

(Figure 6), it takes them 5 to 6 practice opportunities before participants can

then recall the solution the next time the problem is seen. Once this happens

there is a transition to the second learning phase, where participants skip the

Solving stage and transition directly from Encoding to Responding. By the end

of the experiment, about 85% of the problems are in the third learning phase,

where a simple stimulus-response rule results in a further substantial shortening

of the Encoding stage. The theoretical analysis suggests that problems in this

final phase are solved in about 2.5 seconds with most of the time devoted to

executing a 4 character keying sequence to enter the answer (Figure 9).

A major signature of the transition from Learning phase 1 to Learning phase

2 is the drop out of factors reflecting computational complexity, such as height of

the problem. There is not the same clear behavioral signature in the transition

from Phase 2 to 3. It was here that imaging data were particularly important,

showing the change in the nature of the processing. While state identification

depended on whole brain activity, we examined the activation patterns in Figure
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11 and compared Learning phase 2 (by averaging Encode and Respond) with

Learning phase 3. There is more LIPFC activity in Learning phase 2 (.53% vs.

.31%, t(39)=2.18, p <.05), more RLPFC activity in Learning phase 2 (.35% vs.

.00%, t(39)=2.8, p <.05), but more motor activity in Learning phase 3 (.70%

vs. 1.03%, t(39)=3.84, p <.0005). These differences are predicted from the

differing mixes of ACT-R modules involved in these learning phases.

The transition from Phase 2 to Phase 3 raises questions about the roles of

familiarity and recall during what we labeled the Encoding stage. Previous

research on encoding processes suggests that as items become more familiar

early frontal activation diminishes in strength (Curran, 2000). Such work agrees

with our findings that the involvement of frontal regions during Encoding stage

diminishes with practice. Furthermore, fMRI studies have found reduction in

the activation of the left dorsal lateral prefrontal cortex (Reas & Brewer, 2013)

and left lateral prefrontal cortex (Cabeza et al., 2003) as retrieval becomes easier;

however, the diverse functions performed by these regions make it difficult to

know the exact role of these regions in memory recall.

As reviewed in the introduction, both Delaney et al. (1998) and Rickard

(1997) have proposed models that involve two learning phases. Rickard and

colleagues (Rickard, 2004; Bajic & Rickard, 2009; Bajic et al., 2011) associated

the first phase with computation and the second phase with retrieval. Across

a range of novel tasks, researchers have shown that fitting calculation and re-

trieval to separate power functions provides a better model of individual skill

acquisition than fitting a single function across both strategies (Rickard, 1997,

2004; Delaney et al., 1998; Bajic & Rickard, 2009; Bajic et al., 2011). We found

relatively weak learning in the first phase and no learning in the second or third

phases. The ACT-R theory would predict second-phase speedup as the retrieval

was practiced, but not speed up in the third phase. The ACT-R model of phase

2 would suggest however, that retrieval of the answer is only about 18% of the

solution time in the second learning phase (Figure 9), and most of the time is

taken up in parsing the problem and executing the answer. The major speedup

after entering Learning phase 2 comes from the later transition to Learning
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phase 3. It is possible that the evidence seen in these previous efforts for second

phase power-law learning could really have reflected this third phase transition.

Like previous work on understanding the learning processes driving skill

acquisition (Myung et al., 2000; Heathcote et al., 2000; Haider & Frensch, 2002;

Bajic & Rickard, 2009; Bajic et al., 2011) our effort has focused on following the

trajectory of individual items. If these items are going through multiple phases

rather than a continuous speed up, the challenge becomes identifying the phase

a problem is in on a particular trial. Past efforts have relied on measurements

like subject reports to make the distinction between calculation and retrieval

(e.g. Rickard, 2004). While participants probably have some ability to identify

when they are engaged in an activity like repetitive addition, we suspect that

it is largely beyond introspective powers to discriminate between retrieval and

direct recognition. Adding imaging data to latency data facilitates making such

discrimination; however, whatever the sources of evidence, one cannot know

with certainty what phase a problem is in on a particular trial. We gained

evidence about the underlying phases by aggregating the evidence produced

by our different models and measures across problems (which is quite different

than averaging the data across problems). Future research on skill acquisition

would benefit from considering the changes in information processing involved

in practicing a task alongside questions of individual and item level differences.

In addition to making advances in the understanding of skill acquisition,

this work also puts forth a method for more thoroughly studying the neural

basis of skill acquisition. Prior work studying practice effects on brain activa-

tion has been frequently limited to pre- and post-training study designs, and

consequently the resulting theories and models have focused on the distinction

between static cognitive states (Petersen et al., 1998; Schneider & Chein, 2003;

Chein & Schneider, 2005). While these models are not necessarily counter to the

ACT-R model which informed this study, they do not focus on the finer-grain

analysis that we use to consider the impact of practice on each trial. Future

work would benefit from using the bottom-up and top-down approaches dis-

cussed in this paper to better understand how learning changes cognition and
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neural activation. Building and testing theories to describe the correspondence

between these changes is important piece in the larger puzzle of understanding

the neural basis of cognition.

While our results are specific to the current task, they can be seen as part

of a movement to replace the continuous behavioral characterizations that have

dominated much of psychology with mixtures of qualitatively distinct processes.

For instance, individual differences that are often measured on continuous ability

scales might reflect different mixtures of distinct processes. There is consider-

able current effort (e.g. Scheibehenne et al., 2013) to develop rigorous methods

to identify such qualitative mixtures. Within the context of such efforts, our

research can be seen as a push to elaborate the sequential structure of learning

with a similar mixture analysis.
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Appendix A. Mechanical turk experiment

An analysis of the data from our 40 fMRI participants indicated differences

in the memorability of the three repeated problems. Height 4 problems took

longer to transition from Learning phase 1 to Learning phase 2, than either

height 3 or height 5 problems. We considered two possible explanations: 1)

participants may develop alternative strategies for solving problems of different

heights, or 2) that the numbers sequences of the height 4 problems were less
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memorable than the other heights. The height 3 and height 5 problems both

share some resemblance to multiplication facts. For example, 8$5 = 30 which

overlaps with 6×5 = 30 and 9$3 = 24 overlaps with 8×3 = 24. In order to test

these explanations we ran two studies on Amazon Mechanical Turk in which

participants answered repeated and non-repeated pyramid problems. Although

we did not collect demographic information for this sample of 120 participants,

previous mathematical problem solving research (Lee et al., 2015) conducted on

Mechanical Turk included a diversity of age (28 years with a standard deviation

of 6) and education (roughly 10% masters, 40% 4-year, 40% 2-year or some

college, 10% high school). In these previous studies the samples about 55% of

the participants were male.

Our first study of 20 participants set out to establish whether when given

practice on a set of pyramid problems participants recruited from Mechanical

Turk, who complete the experiment on computers in unknown environments,

would display the same memorability differences as our sample collected in the

fMRI scanner. The structure of the experiment was nearly identical to the one

run in the fMRI scanner with some slight modifications. First we removed the

n-back task separating the problem solving trials because we were not collecting

brain response data. Second, we increased the number of practice blocks to 9,

thus giving participants 42 opportunities to practice the repeated problems.

These problems were interspaced with low-practice items seen 3 times over the

course of 9 blocks. Although we could not perform the HSMM-MVPA analysis

of this paper on our Mechanical Turk data set, a repeated-measures ANOVA

showed significant differences in response latencies between problems of the

three heights (f(2,38)=6.95, MES=118.1, p<.005) with height 4 (M 2.8, SD 2.7)

problems taking on average longer to solve than height 3 (M 2.2, SD 2.1) or

height 5 (M 2.7, SD 3.2). After completion of the study we had participants

report if they used any strategies to remember the problems, or found any

formulas to solve the problems. We were interested if the use of alternative

problem solving strategies may explain the learning differences between the

three heights. Five participants reported devising some type of formula for
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Table A.1: Summary of fixed effects in mixed logit mode (N=100, BIC=2180.7)

Predictor Coefficient SE Wald’s Z p-value

Intercept (Height 3) 1.4 .18 7.5 <.001**

Height 4 -.97 .13 -7.3 <.001**

Height 5 -.07 .14 -.53 .59

solving some of the problems. However examining the distribution of these

strategies over height showed formulas were used on 3 height 3 problems, 5 height

4 problems, and 6 height 5 problems. These results provide little evidence that

the faster learning of height 3 and 5 problems is due to participants developing

alternative problem solving strategies.

Our next study of 100 participants investigated the hypothesis that the terms

of height 3 and height 5 problems were more memorable than the terms of height

4 problems. The experiment consisted of 4 blocks, during the memorization

period of each block the participant would be shown five pyramid problems

three times each. These problems appeared as full expressions, such as “8 $

5 = 30”, and remain on the screen for 2 seconds. Participants in this study

were not given the introduction explaining what the $ operator meant, instead

they were told that they would be memorizing numerical expressions. After the

memorization period, each of the 5 expressions would be presented again, but

with the solution missing (i.e. 8 $ 5 ) and participants would have to recall the

value. To test whether across participants the height of the item impacted recall,

we ran a mixed logit model using the lmer package in R (Bates et al., 2014). We

included main effects for height, and random intercept for participant (including

random effects for height did not improve model fit). The main effects of height

supported the significant distinction of height 4 from height 3, but no significant

distinction between height 3 and 5 problems (Table A.1).

47



Appendix B. Upper bounds on the number of apparent regressions

by chance

There are 27 trials where the context probability of being in the first learning

phase is less than .1 and the signal probability is greater than .9. We can place

a bound on how often this would occur by chance. These 27 trials would have

to come from one of two categories:

1. They actually are in Phase 1. There are 3519 trials overall with a context

probability of being in Phase 1 less than .1. These include the 27 trials

in question. They have an average context probability of .0027. Thus,

we would expect 3519 × .0027 = 9.4 trials actually in Phase 1 when the

context probability is less than .1.

2. They are not in Phase 1. There are 246 trials overall with a signal proba-

bility of being in the first learning phase greater than .9 that include these

27 trials. These trials have an average signal probability of not being in

Phase 1 of .0246, implying that no more than 246 × .0246 = 6.0 of the 27

trials are not in Phase 1.

Thus, 9.4 + 6.0 = 15.4 is the expected number of trials in the disjunction of

being in learning phase 1 with a context probability less than .1 or not in Phase

1 with a signal probability greater .9. This number is an upper bound on the

expected number of trials in the conjunction of these two constraints, which is

observed to be 27.

There are 68 trials where the contextual probability of being in learning

phase 3 is greater than .9 and the signal probability is less than .1. These 68

trials would have to come from one of two categories:

1. They are not in Phase 3. There are 2257 trials overall with a context

probability greater than .9 of being in the Phase 3 that include the 68

trials. They have an average context probability of .0046 of not being in

Phase 3, implying an expected number of 2257 × .0046 = 10.4 trials.
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2. They are in Phase 3. There are 995 trials overall with a signal probability

of being in the Phase 3 less than .1 that include these 68 trials. These trials

have an average signal probability of being in Phase 3 of .0258, implying

an expected number of 995 × .0258 = 25.6 trials.

Thus, the expected number of trials in the disjunction is 10.4+25.6 = 36.0

trials while there are observed 68 trials in the conjunction.
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