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Abstract. Using a math-learning paradigm, we explore two potential
uses for fMRI when modeling problem-solving strategies. First, we use
fMRI as an additional data source for our model. Second, we employ
fMRI as a method of testing and understanding our behavioral models.
We evaluate each method and consider which gains the greatest benefit
from the inclusion of fMRI data.

1 Introduction

Intelligent tutoring systems (ITSs) emerged from the idea that we can model
the cognitive learning processes of students to better inform instruction. Early
ITS modeling relied heavily on latency and student productions as responses
of underlying cognition; however, with the improved ability to record neural
responses, methods like functional magnetic resonance imaging (fMRI) are in-
creasingly used to advance research. In their study of an Algebra ITS, Anderson
et al. [1] found that a model using both fMRI and keystroke information better
predicted when a student was problem solving than one that relied solely on
a single data source. They attribute the models success to the merging infor-
mation from the brain with behavioral measures. Predicting whether or not a
student is problem solving, however, is a simpler task than predicting how a stu-
dent is problem solving. Additionally, when predicting problem solving strategy
there is more variety in the type of behavioral data that can be collected. In
this paper, we identify two potential functions of fMRI use in modeling problem
solving states. The first is as an additional data source to build better student
models, and the second, is as a method for testing and understanding behavioral
models. To investigate this question we use a simple math-learning paradigm.
As students gain practice problem solving, the strategies that they use change
from calculation to retreival. In a previous study we found students also employ
intermediary strategies containing a mixture of both retreival and calculation as
well [2]. Rather than predicting if a student is problem solving, our models will
predict what strategy they are using. We will build two models, one that uses
behavioral indicators of strategy use, the other which uses a combination of both
behavioral and neurological indicators. We will compare these two methods to
assess the value of incorporating fMRI as an additional data source. Finally, we
will consider the use of brain data to better understand the behavioral model.



2 Materials and Methods

2.1 Participants

Twenty right-handed university students (9 females; mean age 22; SD 2.3) par-
ticipated in the study. Participants gave informed written consent and received
monetary compensation for their participation.

2.2 Stimuli and Experimental Design

To investigate the change in strategy that occurs when learning a new type of
operation, we trained participants on a novel operation. Participants learned
how to calculate the value of a pyramid expression b$n by adding n decreasing
numbers starting with b [2]. For instance, 11$4=11+10+9+8=38. Participants
used the keypad to type out the answers to these problems and to indicate the
problem solving strategies that were used. After answering a problem, partici-
pants chose from a list of strategies the option that best matched the one used to
solve the problem. We compiled the strategy options from the reported strategies
in a previous study [2]. Students chose from 4 options: “Retrieve” was defined as
remembering the answer; “calculate” was defined as using arithmetic to find the
answer; “partial” was described as partially calculating and partially remember-
ing the problem; the “other” strategy was used for anything else but only one
participant indicated use of this strategy.

2.3 Scanning Procedure

Participants completed 6 blocks of fMRI scans. Participants completed a concur-
rent assessment on the 2nd, 4th and 6th scans. The alternating of scans featuring
an assessment allowed us to check its reactivity (no reaction was found). Overall
there were 3 practiced problems that were repeated 36 times over the course of
the experiment and 18 novel problems that were repeated twice. Pyramid prob-
lems were presented on the screen following a 2 second fixation period. Once the
problem appeared on the screen, the participant was allowed a maximum of 30
seconds to indicate knowledge of a solution by pressing the return key on the
numeric keypad. After pressing return, participants input a solution using the
keypad and were given correctness feedback. Problem solving time was defined
as the time between the appearance of the math problem and the point at which
the participant indicated a readiness to input the answer. fMRI images were
aquired using gradient echo-echo planar image aquisition on a Siemens 3T Verio
Scanner using a 32 channel RF head coil, with 2 s. repetition time (TR). More
detailed data aquisition and processing steps is described in Tenison et al. [2].

2.4 fMRI Analysis

To create a single measure of strategy use from the fMRI data we used a classifi-
cation analysis to quantify how similar a given trial was to other retrieval trials.



Without a direct report of retrieval for all problems, we trained our classifier on
the distinction between practiced and novel problems, since we knew novel prob-
lem could not be solved by retrieval, whereas many practiced problems would be
solved by retrieval. For the purposes of this paper, we will briefly summarize the
processing steps applied to our data (again see Tenison et al. [2] for detail on a
similar analysis). First, we subdivided the brain into 4x4x4 voxel cubes (a voxel
is 3.2 x 3.125 x 3.125mm) over 32 slices of the 64x64 acquisition matrix to create
an initial 408 mega-voxel regions of interest (ROIs) [1]. The second step was to
eliminate regions that had highly variable fMRI signals. ROIs containing more
than 15 TRs across all participants that fluctuated more than 15% during a block
were eliminated. The reduced sample comprised 288, 4x4x4 voxel regions of raw
data. For the 288 regions, we estimated the activity during problem-solving for
each trial and calculated the z-scores of this measure. Normalizing allowed for
comparison across subjects. To eliminate fluctuations in the blood-oxygen-level-
dependent signal that were physiologically implausible, z-scores were Winsorized
such that scores greater than 5 or less than -5 were changed to 5 or -5 respec-
tively. As a third step, we performed dimensionality reduction using Principle
Components Analysis (PCA), which creates a set of uncorrelated variables from
linear combinations of the ROI activity. We then preformed a linear discriminate
analysis (LDA) on the first 50 factors extracted from the PCA to identify which
of these factors contributed to distinguishing between practiced and novel prob-
lems. We used a leave-one-out cross-validation method where we predicted each
subjects from the results of the other subjects. Besides returning a predicted
category for each item, an LDA generates a continuously varying evidence mea-
sure for category membership and a posterior probability that an item is from
a category. These measures were used in subsequent analysis.

3 Results

3.1 Effects of Practice

A repeated measures ANOVA run on the latency data revealed a significant
main effect of problem group (practiced vs. novel), F(1,18)=69.28, p<0.0001,
scan block, F(5,90)=18.66, p<0.0001, and a significant problem by scan block
interaction, F(5,90)=14.95, p<0.0001. The time it took participants to solve
practiced problems decreased, but the time to solve novel problems remained
constant. Additionally, there was an increase in reports of retrieval with prac-
tice, F(2,38)=42.04, p<0.0001, and a decrease of reports of both computation, F
(2,38)=8.396, p=0.001, and partial strategies, F(2,38)=18.598, p<0.0001. Novel
problems showed no changes in reported strategy use. Averaged across all as-
sessed trials practiced problems were reported as retrieved 81.7% of the time
and novel problems were reported as calculated 89% of the time. We took this
as evidence that a LDA classifier trained to distinguish between practiced and
novel problems would use information similar to what would be used to distin-
guish between retrieval and calculation (Figure 1). In cross-subject tests, the
classifier predicted all subjects better than chance. The average d-prime measure



Fig. 1. Four classification analyses are represented here in m-n format. Warm voxels
are more active for m problems, cool voxels are more active for n problems. Locus of
the HIPS represented by the black square.

of performance in this analysis was 1.71, t(19) = 14.5, p<0.001, with a hit rate
of 60% and a false alarm rate of 11%. The major contribution of this classifier
to this study is to label each trial with the probability that it was retrieved. We
will use this evidence score as one source of information about strategy use.

3.2 Results from Two Hidden Markov Models

Our first aim of this study is to assess the value of fMRI as an additional data
source for modeling strategy changes. We used a Hidden Markov Model (HMM)
to study the three practiced problems over the course of the experiment. We
ran two HMMs, the first HMM used only behavioral data (the reports, the
latency and the accuracy information). Each state was associated with three
measures: probability of the three reported strategies, latency (the normalized
log latency was modeled as a Gaussian), and the probability of correct solution.
We calculated the probability of a student being in a specific strategy-use state
after having observed that problem a given number of times using a forward-
backwards algorithm. We fit HMMs for 1-10 states, using BIC to penalize for
added parameters. The best model had 3 strategy states. Table 1 shows the mean
parameter value in each state for the behavioral HMM. The second HMM we
used combined the latency and fMRI evidence data along with the accuracy and
report data. Since latency and fMRI are highly correlated, we orthogonalize these
two measures by use of a PCA. The first component of the PCA proved to carry
all the information accounting for 88.7% of the variance. This first component
can be taken as a general strength measure and was used, in combination with
the other measures, to train the HMM. The right side of Table 1 indicates
the mean parameter values of each state for the combination brain behavioral
HMM. The HMM generates likelihood of state belonging, we assign each problem
to the most likely state. Using this discrete assignment we can compare the two
HMMs by looking at the similarity of state assignments. We ran a Cohens Kappa
calculation to show the agreement between the two HMMs is above chance (κ =



Table 1. Average parameter values for the two models

Models Behavioral Brain and Behavioral
State1 State2 State3 State1 State2 State3

Accuracy (%) 84.2 95.3 98.4 85.7 95.7 98.7
Latency (s) 3.6 1.4 .72 3.3 1.3 .69
fMRI Evidence .50 -.25 -1.3 .46 -.29 -1.44

Percent Strategy Use

Calculation 35.7 9.4 1.1 35 6.4 1.1
Partial 52 20.6 .78 56.4 13.3 .74
Retrieval 12.2 69.9 98.1 8.54 80.3 98.1
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Fig. 2. Mean activation of the Bilateral HIPS. Error bars represent standard error.

0.80) There are no cases in which a problem is assigned as State 1 by one model
and State 3 by the other. This evidence suggests the addition of the brain data
brings little additional benefit to the state estimation.

3.3 Understanding the States

Our second aim of this study is to explore the potential of fMRI data as a
means for understanding the states identified by behavioral models. We ran
an LDA similar to the one described in Section 2.4 but this time we classified
state assignments from the behavioral HMM. We mapped the weights from the
classifier back to the brain in order to observe the areas associated with the
classification of the different states (Figure 1) Among the regions used by the
classifier to distinguish between states, we identified the horizontal intraparietal
sulcus (HIPS), an area used in calculation and numerical cognition. We used
the coordinates from a meta-analysis of numerical cognition [3] (Maxima TC:
-31, -50, 45) to investigate if there were significant differences in bilateral HIPS
activity for the three states. We found significant bilateral differences between
State 1 and 3 (Left: t(19) = 2.6 , p<0.05 Right: t(19) = 2.7, p<0.05) and State 2
and 3 (Left: t(19) = 4.0 , p<0.05 Right: : t(19) = 3.6 , p<0.05) and no differences
between State 1 and 2 (Figure 2).



4 Discussion

In this study we put forth two possible methods for using fMRI to inform how we
model student strategy use. The first method was to use brain data as a source
to incorporate in our models. To this end, the fMRI data did little to change the
classification we obtained just from behavioral data. The second method was to
use brain data to interpret the latent states identified when modeling behavioral
data. Our results bring some insight as to the nature of the three states identified
by our model. It is clear from both the behavioral signatures and the brain data
that State 1 is a calculation state and State 3 is a retrieval state. The nature
of State 2 is less clear, and according to the participant reports State 2 is a
retrieval state. However, the brain data suggests that State 2 is more similar to a
calculation than a retrieval state. The classification of the brain data associated
with the states showed the HIPS, an area used in math calculation, helped
distinguish the 3 states. A further ROI analysis of this region verified that the
bilateral HIPS showed significantly more activation in State 1 and 2 than State
3, and no difference between States 1 and 2. The direction of the HIPS activation
is supporting evidence that States 1 and 2 involve more number processing than
State 3 [3]. Future studies could use exploratory analyses, comparisons with the
untrained problems, or techniques such as representational similarity analysis to
build a more detailed picture of the states. Our goal in this study was to consider
how we use fMRI in modeling cognitive states. Previous work found that models
using both fMRI and keystroke information, better predicted when students were
problem solving [1], however it was unclear if the benefit of fMRI held when
identifying shorter cognitive states or using additional behavioral information.
Our findings suggest that the high spatial and low temporal resolution of the
fMRI is better suited for understanding models rather than building models
of brief cognitive states. Future studies could explore how systems with better
temporal resolution such as MEG or EEG perform in such scenarios.
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